Search alternatives:
driven optimization » design optimization (Expand Search), guided optimization (Expand Search), dose optimization (Expand Search)
based optimization » whale optimization (Expand Search)
binary state » binary image (Expand Search)
state driven » data driven (Expand Search), wave driven (Expand Search), atp driven (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data based » data used (Expand Search)
driven optimization » design optimization (Expand Search), guided optimization (Expand Search), dose optimization (Expand Search)
based optimization » whale optimization (Expand Search)
binary state » binary image (Expand Search)
state driven » data driven (Expand Search), wave driven (Expand Search), atp driven (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data based » data used (Expand Search)
-
101
Supplementary file 1_Comparative evaluation of fast-learning classification algorithms for urban forest tree species identification using EO-1 hyperion hyperspectral imagery.docx
Published 2025“…</p>Methods<p>Thirteen supervised classification algorithms were comparatively evaluated, encompassing traditional spectral/statistical classifiers—Maximum Likelihood, Mahalanobis Distance, Minimum Distance, Parallelepiped, Spectral Angle Mapper (SAM), Spectral Information Divergence (SID), and Binary Encoding—and machine learning algorithms including Decision Tree (DT), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Random Forest (RF), and Artificial Neural Network (ANN). …”
-
102
-
103
Bayesian sequential design for sensitivity experiments with hybrid responses
Published 2023“…To deal with the problem of complex computation involved in searching for optimal designs, fast algorithms are presented using two strategies to approximate the optimal criterion, denoted as SI-optimal design and Bayesian D-optimal design, respectively. …”
-
104
DataSheet_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx
Published 2024“…Cooking data were classified into binary and multiclass variables (CT4C and CT6C). …”
-
105
-
106
Data_Sheet_1_Alzheimer’s Disease Diagnosis and Biomarker Analysis Using Resting-State Functional MRI Functional Brain Network With Multi-Measures Features and Hippocampal Subfield...
Published 2022“…Finally, we implemented and compared the different feature selection algorithms to integrate the structural features, brain networks, and voxel features to optimize the diagnostic identifications of AD using support vector machine (SVM) classifiers. …”
-
107
Models and Dataset
Published 2025“…</p><p dir="ltr"><br></p><p dir="ltr"><b>RAO (Rao Optimization Algorithm):</b><br>RAO is a parameter-less optimization algorithm that updates solutions based on simple arithmetic operations involving the best and worst individuals in the population. …”
-
108
Table_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx
Published 2024“…Cooking data were classified into binary and multiclass variables (CT4C and CT6C). …”
-
109
Supplementary Material 8
Published 2025“…</li><li><b>XGboost: </b>An optimized gradient boosting algorithm that efficiently handles large genomic datasets, commonly used for high-accuracy predictions in <i>E. coli</i> classification.…”
-
110
Seed mix selection model
Published 2022“…The genetic algorithm then operated over 1000 iterations, applying crossover and mutation processes to optimize bee richness. …”
-
111
Flow diagram of the automatic animal detection and background reconstruction.
Published 2020“…(E) The threshold value is calculated based on the histogram: it is the mean of the image subtracted by 4 (optimal value defined by trial and error). …”
-
112
Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles
Published 2025“…Details on the data sourcing process, prompt engineering strategies for large language model (LLM)-based extraction, and validation protocols are provided in the Supplementary Information section.…”