بدائل البحث:
bayesian optimization » based optimization (توسيع البحث)
used optimization » based optimization (توسيع البحث), led optimization (توسيع البحث), guided optimization (توسيع البحث)
binary steps » final steps (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
steps used » sets used (توسيع البحث), sites used (توسيع البحث), systems used (توسيع البحث)
bayesian optimization » based optimization (توسيع البحث)
used optimization » based optimization (توسيع البحث), led optimization (توسيع البحث), guided optimization (توسيع البحث)
binary steps » final steps (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
steps used » sets used (توسيع البحث), sites used (توسيع البحث), systems used (توسيع البحث)
-
21
Friedman average rank sum test results.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
22
IRBMO vs. variant comparison adaptation data.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
23
Supplementary Material for: Penalized Logistic Regression Analysis for Genetic Association Studies of Binary Phenotypes
منشور في 2022"…We consider two approximate approaches to maximizing the marginal likelihood: (i) a Monte Carlo EM algorithm (MCEM) and (ii) a Laplace approximation (LA) to each integral, followed by derivative-free optimization of the approximation. …"
-
24
GSE96058 information.
منشور في 2024"…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). …"
-
25
The performance of classifiers.
منشور في 2024"…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). …"
-
26
-
27
Flowchart scheme of the ML-based model.
منشور في 2024"…<b>Fii)</b> Texture information using local binary patterns. <b>Fiii)</b> Additional texture information using Haralick texture features. …"
-
28
Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish)
منشور في 2024"…</li></ul><p dir="ltr"><b>File Structure</b></p><p dir="ltr">The code generates and saves:</p><ul><li>Weights of the trained model (.h5)</li><li>Configured tokenizer</li><li>Training history in CSV</li><li>Requirements file</li></ul><p dir="ltr"><b>Important Notes</b></p><ul><li>The model excludes category 2 during training</li><li>Implements transfer learning from a pre-trained model for binary hate detection</li><li>Includes early stopping callbacks to prevent overfitting</li><li>Uses class weighting to handle category imbalances</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at: Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …"
-
29
-
30
Image1_Applying the Hubbard-Stratonovich Transformation to Solve Scheduling Problems Under Inequality Constraints With Quantum Annealing.TIF
منشور في 2021"…<p>Quantum annealing is a global optimization algorithm that uses the quantum tunneling effect to speed-up the search for an optimal solution. …"
-
31
Image3_Applying the Hubbard-Stratonovich Transformation to Solve Scheduling Problems Under Inequality Constraints With Quantum Annealing.TIF
منشور في 2021"…<p>Quantum annealing is a global optimization algorithm that uses the quantum tunneling effect to speed-up the search for an optimal solution. …"
-
32
Image2_Applying the Hubbard-Stratonovich Transformation to Solve Scheduling Problems Under Inequality Constraints With Quantum Annealing.TIF
منشور في 2021"…<p>Quantum annealing is a global optimization algorithm that uses the quantum tunneling effect to speed-up the search for an optimal solution. …"
-
33
DataSheet1_Applying the Hubbard-Stratonovich Transformation to Solve Scheduling Problems Under Inequality Constraints With Quantum Annealing.pdf
منشور في 2021"…<p>Quantum annealing is a global optimization algorithm that uses the quantum tunneling effect to speed-up the search for an optimal solution. …"
-
34
-
35
Flow diagram of the automatic animal detection and background reconstruction.
منشور في 2020"…If the identical blob that was detected in panel J (bottom) is found in any of the new subtracted binary images (cyan arrow), the animal is considered as having left its original position, and the algorithm continues. …"
-
36
Active Learning Accelerated Discovery of Stable Iridium Oxide Polymorphs for the Oxygen Evolution Reaction
منشور في 2020"…We emphasize that the proposed AL algorithm can be easily generalized to search for any binary metal oxide structure with a defined stoichiometry.…"