بدائل البحث:
based optimization » whale optimization (توسيع البحث)
used optimization » led optimization (توسيع البحث), guided optimization (توسيع البحث), field optimization (توسيع البحث)
binary task » binary mask (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
task based » risk based (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
used optimization » led optimization (توسيع البحث), guided optimization (توسيع البحث), field optimization (توسيع البحث)
binary task » binary mask (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
task based » risk based (توسيع البحث)
-
1
Proposed Algorithm.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
2
Comparisons between ADAM and NADAM optimizers.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
3
The Pseudo-Code of the IRBMO Algorithm.
منشور في 2025"…To address this problem, this paper proposes an improved red-billed blue magpie algorithm (IRBMO), which is specifically optimized for the feature selection task, and significantly improves the performance and efficiency of the algorithm on medical data by introducing multiple innovative behavioral strategies. …"
-
4
IRBMO vs. meta-heuristic algorithms boxplot.
منشور في 2025"…To address this problem, this paper proposes an improved red-billed blue magpie algorithm (IRBMO), which is specifically optimized for the feature selection task, and significantly improves the performance and efficiency of the algorithm on medical data by introducing multiple innovative behavioral strategies. …"
-
5
IRBMO vs. feature selection algorithm boxplot.
منشور في 2025"…To address this problem, this paper proposes an improved red-billed blue magpie algorithm (IRBMO), which is specifically optimized for the feature selection task, and significantly improves the performance and efficiency of the algorithm on medical data by introducing multiple innovative behavioral strategies. …"
-
6
Summary of Notations Used in this paper.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
7
-
8
An Example of a WPT-MEC Network.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
9
Related Work Summary.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
10
Simulation parameters.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
11
Training losses for N = 10.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
12
Normalized computation rate for N = 10.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
13
-
14
-
15
-
16
-
17
-
18
Optimized Bayesian regularization-back propagation neural network using data-driven intrusion detection system in Internet of Things
منشور في 2025"…Hence, Binary Black Widow Optimization Algorithm (BBWOA) is proposed in this manuscript to improve the BRBPNN classifier that detects intrusion precisely. …"
-
19
IRBMO vs. variant comparison adaptation data.
منشور في 2025"…To address this problem, this paper proposes an improved red-billed blue magpie algorithm (IRBMO), which is specifically optimized for the feature selection task, and significantly improves the performance and efficiency of the algorithm on medical data by introducing multiple innovative behavioral strategies. …"
-
20
Pseudo Code of RBMO.
منشور في 2025"…To address this problem, this paper proposes an improved red-billed blue magpie algorithm (IRBMO), which is specifically optimized for the feature selection task, and significantly improves the performance and efficiency of the algorithm on medical data by introducing multiple innovative behavioral strategies. …"