Search alternatives:
guided optimization » model optimization (Expand Search)
based optimization » whale optimization (Expand Search)
binary task » binary mask (Expand Search)
lines based » lens based (Expand Search), genes based (Expand Search), lines used (Expand Search)
task based » risk based (Expand Search)
guided optimization » model optimization (Expand Search)
based optimization » whale optimization (Expand Search)
binary task » binary mask (Expand Search)
lines based » lens based (Expand Search), genes based (Expand Search), lines used (Expand Search)
task based » risk based (Expand Search)
-
21
Description of the datasets.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
22
S and V shaped transfer functions.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
23
S- and V-Type transfer function diagrams.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
24
Collaborative hunting behavior.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
25
Friedman average rank sum test results.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
26
IRBMO vs. variant comparison adaptation data.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
27
-
28
-
29
Overview of study assessments of the trial.
Published 2024“…Established PDOs will be subject to QPOP analyses to determine their therapeutic sensitivities to specific panels of drugs. A QPOP-guided treatment selection algorithm will then be used to select the most appropriate drug combination. …”
-
30
Supplementary file 1_Dynamic and static integrated classification model of gas well based on XGBoost algorithm—an example from block S of Sulige tight sandstone gas field.pdf
Published 2025“…Aiming at this problem, this paper establishes a set of dynamic and static integrated classification model of tight sandstone gas wells in Sulige based on XGBoost algorithm. After comparison and verification, it is proved to be accurate and reliable. …”
-
31
-
32
-
33
Data_Sheet_1_A real-time driver fatigue identification method based on GA-GRNN.ZIP
Published 2022“…In this paper, a non-invasive and low-cost method of fatigue driving state identification based on genetic algorithm optimization of generalized regression neural network model is proposed. …”
-
34
Distribution of Bound Conformations in Conformational Ensembles for X‑ray Ligands Predicted by the ANI-2X Machine Learning Potential
Published 2023“…This information is useful to guide the construction of libraries for shape-based virtual screening and to improve the docking algorithm to efficiently sample bound conformations.…”
-
35
Distribution of Bound Conformations in Conformational Ensembles for X‑ray Ligands Predicted by the ANI-2X Machine Learning Potential
Published 2023“…This information is useful to guide the construction of libraries for shape-based virtual screening and to improve the docking algorithm to efficiently sample bound conformations.…”
-
36
Sample image for illustration.
Published 2024“…<div><p>Feature description is a critical task in Augmented Reality Tracking. This article introduces a Convex Based Feature Descriptor (CBFD) system designed to withstand rotation, lighting, and blur variations while remaining computationally efficient. …”
-
37
Comparison analysis of computation time.
Published 2024“…<div><p>Feature description is a critical task in Augmented Reality Tracking. This article introduces a Convex Based Feature Descriptor (CBFD) system designed to withstand rotation, lighting, and blur variations while remaining computationally efficient. …”
-
38
Process flow diagram of CBFD.
Published 2024“…<div><p>Feature description is a critical task in Augmented Reality Tracking. This article introduces a Convex Based Feature Descriptor (CBFD) system designed to withstand rotation, lighting, and blur variations while remaining computationally efficient. …”
-
39
Precision recall curve.
Published 2024“…<div><p>Feature description is a critical task in Augmented Reality Tracking. This article introduces a Convex Based Feature Descriptor (CBFD) system designed to withstand rotation, lighting, and blur variations while remaining computationally efficient. …”
-
40