Showing 21 - 40 results of 57 for search '(( binary task bayesian optimization algorithm ) OR ( library based work optimization algorithm ))*', query time: 1.14s Refine Results
  1. 21

    Cheminformatics-Guided Cell-Free Exploration of Peptide Natural Products by Jarrett M. Pelton (18143785)

    Published 2024
    “…To assess the peptide NP space that is directly accessible to current cell-free technologies, we developed a peptide parsing algorithm that breaks down peptide NPs into building blocks based on ribosomal translation logic. …”
  2. 22
  3. 23

    Data_Sheet_1_A real-time driver fatigue identification method based on GA-GRNN.ZIP by Xiaoyuan Wang (492534)

    Published 2022
    “…In this paper, a non-invasive and low-cost method of fatigue driving state identification based on genetic algorithm optimization of generalized regression neural network model is proposed. …”
  4. 24

    Algorithms of Load Balancing in Next-Generation Mobile Netwoks: A systematic literature review by Juan Gabriel Ochoa-Aldeán (20678912)

    Published 2025
    “…Through a <b>systematic review following the PRISMA methodology</b>, we analyzed 45 studies from five scientific databases (IEEE Xplore, Scopus, ScienceDirect, SpringerLink, and ACM Digital Library), identifying key patterns:</p><ol><li>The correlation between optimization parameters (latency, throughput, user mobility) and the performance of automatic/hybrid algorithms.…”
  5. 25

    Intelligent Selection of Metal–Organic Framework Arrays for Methane Sensing via Genetic Algorithms by Jenna A. Gustafson (3744139)

    Published 2019
    “…Thus current electronic noses do not achieve optimal detection. In this work, we employ metal–organic frameworks (MOFs) as sensing materials and leverage a genetic algorithm to identify optimal combinations of them for detecting methane leaks in air. …”
  6. 26

    Data_Sheet_1_CLGBO: An Algorithm for Constructing Highly Robust Coding Sets for DNA Storage.docx by Yanfen Zheng (3814507)

    Published 2021
    “…In this study, we describe an enhanced gradient-based optimizer that includes the Cauchy and Levy mutation strategy (CLGBO) to construct DNA coding sets, which are used as primer and address libraries. …”
  7. 27
  8. 28

    Predictive Analysis of Mushroom Toxicity Based Exclusively on Their Natural Habitat. by Enrico Bertozzi (22461709)

    Published 2025
    “…<br><br>Methods<br><br>This work is a quantitative and experimental study of supervised classification. …”
  9. 29
  10. 30

    METAHEURISTICS EVALUATION: A PROPOSAL FOR A MULTICRITERIA METHODOLOGY by Valdir Agustinho de Melo (12735562)

    Published 2022
    “…<div><p>ABSTRACT In this work we propose a multicriteria evaluation scheme for heuristic algorithms based on the classic Condorcet ranking technique. …”
  11. 31

    Image_13_The Effect of Training Sample Size on the Prediction of White Matter Hyperintensity Volume in a Healthy Population Using BIANCA.JPEG by Niklas Wulms (11928755)

    Published 2022
    “…In this study, we tested whether WMH volumetry with FMRIB software library v6.0 (FSL; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) Brain Intensity AbNormality Classification Algorithm (BIANCA), a customizable and trainable algorithm that quantifies WMH volume based on individual data training sets, can be optimized for a normal aging population.…”
  12. 32

    Image_2_The Effect of Training Sample Size on the Prediction of White Matter Hyperintensity Volume in a Healthy Population Using BIANCA.JPEG by Niklas Wulms (11928755)

    Published 2022
    “…In this study, we tested whether WMH volumetry with FMRIB software library v6.0 (FSL; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) Brain Intensity AbNormality Classification Algorithm (BIANCA), a customizable and trainable algorithm that quantifies WMH volume based on individual data training sets, can be optimized for a normal aging population.…”
  13. 33

    Image_1_The Effect of Training Sample Size on the Prediction of White Matter Hyperintensity Volume in a Healthy Population Using BIANCA.JPEG by Niklas Wulms (11928755)

    Published 2022
    “…In this study, we tested whether WMH volumetry with FMRIB software library v6.0 (FSL; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) Brain Intensity AbNormality Classification Algorithm (BIANCA), a customizable and trainable algorithm that quantifies WMH volume based on individual data training sets, can be optimized for a normal aging population.…”
  14. 34

    Image_6_The Effect of Training Sample Size on the Prediction of White Matter Hyperintensity Volume in a Healthy Population Using BIANCA.JPEG by Niklas Wulms (11928755)

    Published 2022
    “…In this study, we tested whether WMH volumetry with FMRIB software library v6.0 (FSL; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) Brain Intensity AbNormality Classification Algorithm (BIANCA), a customizable and trainable algorithm that quantifies WMH volume based on individual data training sets, can be optimized for a normal aging population.…”
  15. 35

    Image_10_The Effect of Training Sample Size on the Prediction of White Matter Hyperintensity Volume in a Healthy Population Using BIANCA.JPEG by Niklas Wulms (11928755)

    Published 2022
    “…In this study, we tested whether WMH volumetry with FMRIB software library v6.0 (FSL; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) Brain Intensity AbNormality Classification Algorithm (BIANCA), a customizable and trainable algorithm that quantifies WMH volume based on individual data training sets, can be optimized for a normal aging population.…”
  16. 36

    Data_Sheet_1_The Effect of Training Sample Size on the Prediction of White Matter Hyperintensity Volume in a Healthy Population Using BIANCA.pdf by Niklas Wulms (11928755)

    Published 2022
    “…In this study, we tested whether WMH volumetry with FMRIB software library v6.0 (FSL; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) Brain Intensity AbNormality Classification Algorithm (BIANCA), a customizable and trainable algorithm that quantifies WMH volume based on individual data training sets, can be optimized for a normal aging population.…”
  17. 37

    Image_12_The Effect of Training Sample Size on the Prediction of White Matter Hyperintensity Volume in a Healthy Population Using BIANCA.JPEG by Niklas Wulms (11928755)

    Published 2022
    “…In this study, we tested whether WMH volumetry with FMRIB software library v6.0 (FSL; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) Brain Intensity AbNormality Classification Algorithm (BIANCA), a customizable and trainable algorithm that quantifies WMH volume based on individual data training sets, can be optimized for a normal aging population.…”
  18. 38

    Image_3_The Effect of Training Sample Size on the Prediction of White Matter Hyperintensity Volume in a Healthy Population Using BIANCA.JPEG by Niklas Wulms (11928755)

    Published 2022
    “…In this study, we tested whether WMH volumetry with FMRIB software library v6.0 (FSL; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) Brain Intensity AbNormality Classification Algorithm (BIANCA), a customizable and trainable algorithm that quantifies WMH volume based on individual data training sets, can be optimized for a normal aging population.…”
  19. 39

    Data_Sheet_1_The Effect of Training Sample Size on the Prediction of White Matter Hyperintensity Volume in a Healthy Population Using BIANCA.zip by Niklas Wulms (11928755)

    Published 2022
    “…In this study, we tested whether WMH volumetry with FMRIB software library v6.0 (FSL; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) Brain Intensity AbNormality Classification Algorithm (BIANCA), a customizable and trainable algorithm that quantifies WMH volume based on individual data training sets, can be optimized for a normal aging population.…”
  20. 40

    Image_4_The Effect of Training Sample Size on the Prediction of White Matter Hyperintensity Volume in a Healthy Population Using BIANCA.JPEG by Niklas Wulms (11928755)

    Published 2022
    “…In this study, we tested whether WMH volumetry with FMRIB software library v6.0 (FSL; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) Brain Intensity AbNormality Classification Algorithm (BIANCA), a customizable and trainable algorithm that quantifies WMH volume based on individual data training sets, can be optimized for a normal aging population.…”