يعرض 141 - 160 نتائج من 173 نتيجة بحث عن '(( binary task binary classification algorithm ) OR ( binary b based optimization algorithm ))', وقت الاستعلام: 0.45s تنقيح النتائج
  1. 141
  2. 142

    Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish) حسب Daniel Pérez Palau (11097348)

    منشور في 2024
    "…</li></ul><p dir="ltr"><b>File Structure</b></p><p dir="ltr">The code generates and saves:</p><ul><li>Weights of the trained model (.h5)</li><li>Configured tokenizer</li><li>Training history in CSV</li><li>Requirements file</li></ul><p dir="ltr"><b>Important Notes</b></p><ul><li>The model excludes category 2 during training</li><li>Implements transfer learning from a pre-trained model for binary hate detection</li><li>Includes early stopping callbacks to prevent overfitting</li><li>Uses class weighting to handle category imbalances</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at: Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …"
  3. 143

    Related studies on IDS using deep learning. حسب Arshad Hashmi (13835488)

    منشور في 2024
    "…The suggested model’s accuracies on binary and multi-class classification tasks using the NSL-KDD dataset are 99.67% and 99.88%, respectively. …"
  4. 144

    The architecture of the BI-LSTM model. حسب Arshad Hashmi (13835488)

    منشور في 2024
    "…The suggested model’s accuracies on binary and multi-class classification tasks using the NSL-KDD dataset are 99.67% and 99.88%, respectively. …"
  5. 145

    Comparison of accuracy and DR on UNSW-NB15. حسب Arshad Hashmi (13835488)

    منشور في 2024
    "…The suggested model’s accuracies on binary and multi-class classification tasks using the NSL-KDD dataset are 99.67% and 99.88%, respectively. …"
  6. 146

    Comparison of DR and FPR of UNSW-NB15. حسب Arshad Hashmi (13835488)

    منشور في 2024
    "…The suggested model’s accuracies on binary and multi-class classification tasks using the NSL-KDD dataset are 99.67% and 99.88%, respectively. …"
  7. 147
  8. 148

    Data_Sheet_1_Automatic Detection for Multi-Labeled Cardiac Arrhythmia Based on Frame Blocking Preprocessing and Residual Networks.PDF حسب Zicong Li (228040)

    منشور في 2021
    "…</p><p>Result: The developed algorithm was trained and tested on ECG data of nine types of cardiac states, fulfilling a task of multi-label classification. …"
  9. 149

    Fig 12 - حسب Nisha Yadav (366131)

    منشور في 2024
  10. 150
  11. 151
  12. 152
  13. 153

    Steps in the extraction of 14 coordinates from the CT slices for the curved MPR. حسب Linus Woitke (22783534)

    منشور في 2025
    "…Protruding paths are then eliminated using graph-based optimization algorithms, as demonstrated in f). …"
  14. 154
  15. 155
  16. 156

    Models and Dataset حسب M RN (9866504)

    منشور في 2025
    "…</p><p dir="ltr"><br></p><p dir="ltr"><b>RAO (Rao Optimization Algorithm):</b><br>RAO is a parameter-less optimization algorithm that updates solutions based on simple arithmetic operations involving the best and worst individuals in the population. …"
  17. 157

    iNCog-EEG (ideal vs. Noisy Cognitive EEG for Workload Assessment) Dataset حسب Fariya Bintay Shafi (21692408)

    منشور في 2025
    "…</li><li><b>Ground Truth Labels:</b> Derived from task difficulty metadata and subjective feedback, yielding a <b>two-level annotation scheme</b>:</li><li><ol><li><b>Binary classification:</b> No Workload (rest) vs. …"
  18. 158

    DataSheet1_Nucleotide-level prediction of CircRNA-protein binding based on fully convolutional neural network.PDF حسب Zhen Shen (393133)

    منشور في 2023
    "…</p><p>Methods: In this study, based on the deep learning models that implement pixel-level binary classification prediction in computer vision, we viewed the CircRNA-protein binding sites prediction as a nucleotide-level binary classification task, and use a fully convolutional neural networks to identify CircRNA-protein binding motif sites (CPBFCN).…"
  19. 159

    Table1_Nucleotide-level prediction of CircRNA-protein binding based on fully convolutional neural network.XLSX حسب Zhen Shen (393133)

    منشور في 2023
    "…</p><p>Methods: In this study, based on the deep learning models that implement pixel-level binary classification prediction in computer vision, we viewed the CircRNA-protein binding sites prediction as a nucleotide-level binary classification task, and use a fully convolutional neural networks to identify CircRNA-protein binding motif sites (CPBFCN).…"
  20. 160

    Supplementary Material for: Utilizing Deep Learning to Identify Electron-Dense Deposits in Renal Biopsy Electron Microscopy Images حسب figshare admin karger (2628495)

    منشور في 2025
    "…The ResNet18 architecture was selected for our task. To evaluate the model's classification capability, we created a binary classification model to identify the presence of deposits in EM images. …"