Search alternatives:
derived optimization » driven optimization (Expand Search), required optimization (Expand Search), guided optimization (Expand Search)
design optimization » bayesian optimization (Expand Search)
task derived » risks derived (Expand Search), ipsc derived (Expand Search), data derived (Expand Search)
primary data » primary care (Expand Search)
binary task » binary mask (Expand Search)
derived optimization » driven optimization (Expand Search), required optimization (Expand Search), guided optimization (Expand Search)
design optimization » bayesian optimization (Expand Search)
task derived » risks derived (Expand Search), ipsc derived (Expand Search), data derived (Expand Search)
primary data » primary care (Expand Search)
binary task » binary mask (Expand Search)
-
21
-
22
-
23
-
24
S1 Data -
Published 2023“…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
-
25
Curve of step response signal of 6 algorithms.
Published 2023“…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
-
26
-
27
-
28
Table_1_One-Time Optimization of Advanced T Cell Culture Media Using a Machine Learning Pipeline.DOCX
Published 2021“…<p>The growing application of cell and gene therapies in humans leads to a need for cell type-optimized culture media. Design of Experiments (DoE) is a successful and well known tool for the development and optimization of cell culture media for bioprocessing. …”
-
29
Wilcoxon’s rank sum test results.
Published 2023“…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
-
30
Flowchart of MSHHOTSA.
Published 2023“…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
-
31
Flowchart of TSA [43].
Published 2023“…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
-
32
The proportion integral derivative controller.
Published 2023“…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
-
33
Random parameter factor.
Published 2023“…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
-
34
Eight commonly used benchmark functions.
Published 2023“…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
-
35
Hyperbolic tangent row domain.
Published 2023“…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
-
36
Parameter settings.
Published 2023“…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
-
37
Nonlinear fast convergence factor.
Published 2023“…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
-
38
CEC2019 benchmark functions.
Published 2023“…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
-
39
-
40