Search alternatives:
design optimization » bayesian optimization (Expand Search)
all optimization » art optimization (Expand Search), ai optimization (Expand Search), whale optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
binary task » binary mask (Expand Search)
task design » based design (Expand Search)
based all » based small (Expand Search), based cell (Expand Search), based ap (Expand Search)
design optimization » bayesian optimization (Expand Search)
all optimization » art optimization (Expand Search), ai optimization (Expand Search), whale optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
binary task » binary mask (Expand Search)
task design » based design (Expand Search)
based all » based small (Expand Search), based cell (Expand Search), based ap (Expand Search)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
DE algorithm flow.
Published 2025“…In the experiments, optimization metrics such as kinematic optimization rate (calculated based on the shortest path and connectivity between functional areas), space utilization rate (calculated by the ratio of room area to total usable space), and functional fitness (based on the weighted sum of users’ subjective evaluations and functional matches) all perform well. …”
-
8
Test results of different algorithms.
Published 2025“…In the experiments, optimization metrics such as kinematic optimization rate (calculated based on the shortest path and connectivity between functional areas), space utilization rate (calculated by the ratio of room area to total usable space), and functional fitness (based on the weighted sum of users’ subjective evaluations and functional matches) all perform well. …”
-
9
Proposed Algorithm.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
10
The Pseudo-Code of the IRBMO Algorithm.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
11
Comparisons between ADAM and NADAM optimizers.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
12
IRBMO vs. meta-heuristic algorithms boxplot.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
13
IRBMO vs. feature selection algorithm boxplot.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
14
Algorithm for generating hyperparameter.
Published 2024“…The results obtained show that the proposed model has superior prediction accuracy in comparison to its counterparts. Moreover, among all the hyperparameter-optimized algorithms, adaboost algorithm outperformed all the other hyperparameter-optimized algorithms. …”
-
15
Results of machine learning algorithm.
Published 2024“…The results obtained show that the proposed model has superior prediction accuracy in comparison to its counterparts. Moreover, among all the hyperparameter-optimized algorithms, adaboost algorithm outperformed all the other hyperparameter-optimized algorithms. …”
-
16
ROC comparison of machine learning algorithm.
Published 2024“…The results obtained show that the proposed model has superior prediction accuracy in comparison to its counterparts. Moreover, among all the hyperparameter-optimized algorithms, adaboost algorithm outperformed all the other hyperparameter-optimized algorithms. …”
-
17
-
18
Best optimizer results of Lightbgm.
Published 2024“…The results obtained show that the proposed model has superior prediction accuracy in comparison to its counterparts. Moreover, among all the hyperparameter-optimized algorithms, adaboost algorithm outperformed all the other hyperparameter-optimized algorithms. …”
-
19
Best optimizer results of Adaboost.
Published 2024“…The results obtained show that the proposed model has superior prediction accuracy in comparison to its counterparts. Moreover, among all the hyperparameter-optimized algorithms, adaboost algorithm outperformed all the other hyperparameter-optimized algorithms. …”
-
20
Best optimizer results of Lightbgm.
Published 2024“…The results obtained show that the proposed model has superior prediction accuracy in comparison to its counterparts. Moreover, among all the hyperparameter-optimized algorithms, adaboost algorithm outperformed all the other hyperparameter-optimized algorithms. …”