Search alternatives:
design optimization » bayesian optimization (Expand Search)
small optimization » swarm optimization (Expand Search), whale optimization (Expand Search), spatial optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
binary task » binary mask (Expand Search)
task design » based design (Expand Search)
based small » based smart (Expand Search), based sample (Expand Search)
design optimization » bayesian optimization (Expand Search)
small optimization » swarm optimization (Expand Search), whale optimization (Expand Search), spatial optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
binary task » binary mask (Expand Search)
task design » based design (Expand Search)
based small » based smart (Expand Search), based sample (Expand Search)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
Proposed Algorithm.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
11
-
12
The Pseudo-Code of the IRBMO Algorithm.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
13
Comparisons between ADAM and NADAM optimizers.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
14
IRBMO vs. meta-heuristic algorithms boxplot.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
15
IRBMO vs. feature selection algorithm boxplot.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
16
-
17
-
18
-
19
-
20
Datasets and their properties.
Published 2023“…In addition, we designed nested transfer (NT) functions and investigated the influence of the function on the level-1 optimizer. The binary Ebola optimization search algorithm (BEOSA) is applied for the level-1 mutation, while the simulated annealing (SA) and firefly (FFA) algorithms are investigated for the level-2 optimizer. …”