Showing 1 - 20 results of 115 for search '(( binary task design optimization algorithm ) OR ( final sample design optimization algorithm ))', query time: 0.35s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8

    Sample image for illustration. by Indhumathi S. (19173013)

    Published 2024
    “…<div><p>Feature description is a critical task in Augmented Reality Tracking. This article introduces a Convex Based Feature Descriptor (CBFD) system designed to withstand rotation, lighting, and blur variations while remaining computationally efficient. …”
  9. 9

    Multi objective optimization design process. by Xueyong Pan (20390363)

    Published 2024
    “…Subsequently, response surface experiments were conducted to analyze the width parameters of various flow channels in the liquid cooled plate Finally, the Design of Experiment (DOE) was employed to conduct optimal Latin hypercube sampling on the flow channel depth (<i>H</i>), mass flow (<i>Q</i>), and inlet and outlet diameter (<i>d</i>), combined with a genetic algorithm for multi-objective analysis. …”
  10. 10

    Proposed Algorithm. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  11. 11

    The Pseudo-Code of the IRBMO Algorithm. by Chenyi Zhu (9383370)

    Published 2025
    “…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
  12. 12

    Comparisons between ADAM and NADAM optimizers. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  13. 13

    Optimal Latin square sampling distribution. by Xueyong Pan (20390363)

    Published 2024
    “…Subsequently, response surface experiments were conducted to analyze the width parameters of various flow channels in the liquid cooled plate Finally, the Design of Experiment (DOE) was employed to conduct optimal Latin hypercube sampling on the flow channel depth (<i>H</i>), mass flow (<i>Q</i>), and inlet and outlet diameter (<i>d</i>), combined with a genetic algorithm for multi-objective analysis. …”
  14. 14

    IRBMO vs. meta-heuristic algorithms boxplot. by Chenyi Zhu (9383370)

    Published 2025
    “…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
  15. 15

    IRBMO vs. feature selection algorithm boxplot. by Chenyi Zhu (9383370)

    Published 2025
    “…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
  16. 16

    The flowchart of Algorithm 2. by Jing Xu (15337)

    Published 2024
    “…To solve this optimization model, a multi-level optimization algorithm is designed. …”
  17. 17

    PANet network design. by Mengqi Yuan (4852555)

    Published 2025
    “…Finally, a bidirectional feature pyramid network (BiFPN) was integrated to optimize feature fusion, leveraging a bidirectional information transfer mechanism and an adaptive feature selection strategy. …”
  18. 18

    BiFPN network design. by Mengqi Yuan (4852555)

    Published 2025
    “…Finally, a bidirectional feature pyramid network (BiFPN) was integrated to optimize feature fusion, leveraging a bidirectional information transfer mechanism and an adaptive feature selection strategy. …”
  19. 19

    Design variables and range of values. by Xueyong Pan (20390363)

    Published 2024
    “…Subsequently, response surface experiments were conducted to analyze the width parameters of various flow channels in the liquid cooled plate Finally, the Design of Experiment (DOE) was employed to conduct optimal Latin hypercube sampling on the flow channel depth (<i>H</i>), mass flow (<i>Q</i>), and inlet and outlet diameter (<i>d</i>), combined with a genetic algorithm for multi-objective analysis. …”
  20. 20

    Feasibility diagram of design points. by Xueyong Pan (20390363)

    Published 2024
    “…Subsequently, response surface experiments were conducted to analyze the width parameters of various flow channels in the liquid cooled plate Finally, the Design of Experiment (DOE) was employed to conduct optimal Latin hypercube sampling on the flow channel depth (<i>H</i>), mass flow (<i>Q</i>), and inlet and outlet diameter (<i>d</i>), combined with a genetic algorithm for multi-objective analysis. …”