بدائل البحث:
design optimization » bayesian optimization (توسيع البحث)
primary data » primary care (توسيع البحث)
binary task » binary mask (توسيع البحث)
task design » based design (توسيع البحث)
design optimization » bayesian optimization (توسيع البحث)
primary data » primary care (توسيع البحث)
binary task » binary mask (توسيع البحث)
task design » based design (توسيع البحث)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
Proposed Algorithm.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
12
-
13
The Pseudo-Code of the IRBMO Algorithm.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
-
14
Comparisons between ADAM and NADAM optimizers.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
15
IRBMO vs. meta-heuristic algorithms boxplot.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
-
16
IRBMO vs. feature selection algorithm boxplot.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
-
17
-
18
Speed reducer design problem.
منشور في 2023"…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …"
-
19
Pressure vessel design problem.
منشور في 2023"…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …"
-
20
Gear train design problem.
منشور في 2023"…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …"