بدائل البحث:
driven optimization » design optimization (توسيع البحث), guided optimization (توسيع البحث), dose optimization (توسيع البحث)
case optimization » based optimization (توسيع البحث), phase optimization (توسيع البحث), dose optimization (توسيع البحث)
binary task » binary mask (توسيع البحث)
task driven » task derived (توسيع البحث), mapk driven (توسيع البحث), state driven (توسيع البحث)
based case » base case (توسيع البحث), based cancer (توسيع البحث)
lens » less (توسيع البحث)
driven optimization » design optimization (توسيع البحث), guided optimization (توسيع البحث), dose optimization (توسيع البحث)
case optimization » based optimization (توسيع البحث), phase optimization (توسيع البحث), dose optimization (توسيع البحث)
binary task » binary mask (توسيع البحث)
task driven » task derived (توسيع البحث), mapk driven (توسيع البحث), state driven (توسيع البحث)
based case » base case (توسيع البحث), based cancer (توسيع البحث)
lens » less (توسيع البحث)
-
1
Lens imaging opposition-based learning.
منشور في 2025"…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …"
-
2
Compare algorithm parameter settings.
منشور في 2025"…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …"
-
3
-
4
-
5
-value on CEC2022 (dim = 20).
منشور في 2025"…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …"
-
6
Precision elimination strategy.
منشور في 2025"…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …"
-
7
Results of low-light image enhancement test.
منشور في 2025"…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …"
-
8
-value on 23 benchmark functions (dim = 30).
منشور في 2025"…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …"
-
9
Evaluation metrics obtained by SBOA and MESBOA.
منشور في 2025"…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …"
-
10
-
11
-
12
-
13
-
14
Thesis-RAMIS-Figs_Slides
منشور في 2024"…In the context of facies recovery using simulations, the task of optimal sampling is formalized and addressed using a maximum information extraction criterion. …"
-
15
Massive Mixed Models in Julia
منشور في 2025"…<p dir="ltr">Traditional approaches to mixed effects models using generalized least squares or expectation-maximization approaches struggle to scale to datasets with many thousands of observations and hundreds of levels of a single blocking variable. Special casing of nesting or crossing of random effects is required to achieve acceptable computational performance, but this special casing often makes it very difficult to handle less-than-idealized cases, such partial crossing or multiple levels of nesting. …"