Showing 41 - 60 results of 96 for search '(( binary task driven optimization algorithm ) OR ( primary data global optimization algorithm ))', query time: 0.52s Refine Results
  1. 41

    Parameter settings. by Guangwei Liu (181992)

    Published 2023
    “…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
  2. 42

    Nonlinear fast convergence factor. by Guangwei Liu (181992)

    Published 2023
    “…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
  3. 43

    CEC2019 benchmark functions. by Guangwei Liu (181992)

    Published 2023
    “…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
  4. 44

    Performance metrics for BrC. by Afnan M. Alhassan (18349378)

    Published 2024
    “…Next, we propose a hybrid chaotic sand cat optimization technique, together with the Remora Optimization Algorithm (ROA) for feature selection. …”
  5. 45

    Proposed CVAE model. by Afnan M. Alhassan (18349378)

    Published 2024
    “…Next, we propose a hybrid chaotic sand cat optimization technique, together with the Remora Optimization Algorithm (ROA) for feature selection. …”
  6. 46

    Proposed methodology. by Afnan M. Alhassan (18349378)

    Published 2024
    “…Next, we propose a hybrid chaotic sand cat optimization technique, together with the Remora Optimization Algorithm (ROA) for feature selection. …”
  7. 47

    Loss vs. Epoch. by Afnan M. Alhassan (18349378)

    Published 2024
    “…Next, we propose a hybrid chaotic sand cat optimization technique, together with the Remora Optimization Algorithm (ROA) for feature selection. …”
  8. 48

    Sample images from the BreakHis dataset. by Afnan M. Alhassan (18349378)

    Published 2024
    “…Next, we propose a hybrid chaotic sand cat optimization technique, together with the Remora Optimization Algorithm (ROA) for feature selection. …”
  9. 49

    Accuracy vs. Epoch. by Afnan M. Alhassan (18349378)

    Published 2024
    “…Next, we propose a hybrid chaotic sand cat optimization technique, together with the Remora Optimization Algorithm (ROA) for feature selection. …”
  10. 50

    Segmentation results of the proposed model. by Afnan M. Alhassan (18349378)

    Published 2024
    “…Next, we propose a hybrid chaotic sand cat optimization technique, together with the Remora Optimization Algorithm (ROA) for feature selection. …”
  11. 51

    S1 Dataset - by Afnan M. Alhassan (18349378)

    Published 2024
    “…Next, we propose a hybrid chaotic sand cat optimization technique, together with the Remora Optimization Algorithm (ROA) for feature selection. …”
  12. 52

    CSCO’s flowchart. by Afnan M. Alhassan (18349378)

    Published 2024
    “…Next, we propose a hybrid chaotic sand cat optimization technique, together with the Remora Optimization Algorithm (ROA) for feature selection. …”
  13. 53
  14. 54
  15. 55
  16. 56

    Data used in this study. by Qinghua Li (398885)

    Published 2024
    “…To overcome these shortcomings, this paper cites an improved SSA search algorithm that incorporates the ingestion strategy of the FA algorithm to increase the diversity of solutions and global search capability, the Firefly Algorithm-based Sparrow Search Optimization Algorithm (FA-SSA algorithm) is introduced. …”
  17. 57

    DEM error verified by airborne data. by Qinghua Li (398885)

    Published 2024
    “…To overcome these shortcomings, this paper cites an improved SSA search algorithm that incorporates the ingestion strategy of the FA algorithm to increase the diversity of solutions and global search capability, the Firefly Algorithm-based Sparrow Search Optimization Algorithm (FA-SSA algorithm) is introduced. …”
  18. 58

    Inconsistency concept for a triad (2, 5, 3). by Waldemar W. Koczkodaj (22008783)

    Published 2025
    “…The proposed regeneration method emulates three primary phases of a biological process: identifying the most damaged areas (by identifying inconsistencies in the pairwise comparison matrix), cell proliferation (filling in missing data), and stabilization (optimization of global consistency). …”
  19. 59

    Error of ICESat-2 with respect to airborne data. by Qinghua Li (398885)

    Published 2024
    “…To overcome these shortcomings, this paper cites an improved SSA search algorithm that incorporates the ingestion strategy of the FA algorithm to increase the diversity of solutions and global search capability, the Firefly Algorithm-based Sparrow Search Optimization Algorithm (FA-SSA algorithm) is introduced. …”
  20. 60

    Machine learning deployment strategies and schematic illustration of the proposed generative adversarial algorithm for domain adaptation. by Aly A. Valliani (13251484)

    Published 2022
    “…<p><b>(A)</b> There are four primary methods by which machine learning models can be deployed in a context with distinct data domains: 1) train a model on one domain and deploy it across multiple distinct domains, 2) train multiple bespoke models that are optimized for deployment on individual domains, 3) train and deploy a single global model on all domains, and 4) train a model on one domain and adapt it through technical means to make it performant on a distinct domain. …”