Showing 121 - 140 results of 396 for search '(( binary task driven optimization algorithm ) OR ( primary data used optimization algorithm ))', query time: 0.70s Refine Results
  1. 121
  2. 122
  3. 123

    Table_1_Enriching the Study Population for Ischemic Stroke Therapeutic Trials Using a Machine Learning Algorithm.pdf by Jenish Maharjan (11998331)

    Published 2022
    “…Patient data were extracted from electronic health records and used to train and test a gradient boosted machine learning algorithm (MLA) to predict the patients' risk of experiencing ischemic stroke from the period of 1 day up to 1 year following the patient encounter. …”
  4. 124

    Image_1_Enriching the Study Population for Ischemic Stroke Therapeutic Trials Using a Machine Learning Algorithm.pdf by Jenish Maharjan (11998331)

    Published 2022
    “…Patient data were extracted from electronic health records and used to train and test a gradient boosted machine learning algorithm (MLA) to predict the patients' risk of experiencing ischemic stroke from the period of 1 day up to 1 year following the patient encounter. …”
  5. 125
  6. 126

    Confusion matrix for multiclass classification. by Ebru Ergün (21395498)

    Published 2025
    “…Features were extracted using the Hilbert Transform, while classification was performed via the k-nearest neighbor algorithm. …”
  7. 127

    General flow chart of the proposed method. by Ebru Ergün (21395498)

    Published 2025
    “…Features were extracted using the Hilbert Transform, while classification was performed via the k-nearest neighbor algorithm. …”
  8. 128

    Wilcoxon’s rank sum test results. by Guangwei Liu (181992)

    Published 2023
    “…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
  9. 129

    Flowchart of MSHHOTSA. by Guangwei Liu (181992)

    Published 2023
    “…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
  10. 130

    Tension/compression spring design problem. by Guangwei Liu (181992)

    Published 2023
    “…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
  11. 131

    Speed reducer design problem. by Guangwei Liu (181992)

    Published 2023
    “…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
  12. 132

    Flowchart of TSA [43]. by Guangwei Liu (181992)

    Published 2023
    “…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
  13. 133

    Pressure vessel design problem. by Guangwei Liu (181992)

    Published 2023
    “…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
  14. 134

    Gear train design problem. by Guangwei Liu (181992)

    Published 2023
    “…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
  15. 135

    The proportion integral derivative controller. by Guangwei Liu (181992)

    Published 2023
    “…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
  16. 136

    Random parameter factor. by Guangwei Liu (181992)

    Published 2023
    “…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
  17. 137

    Hyperbolic tangent row domain. by Guangwei Liu (181992)

    Published 2023
    “…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
  18. 138

    Parameter settings. by Guangwei Liu (181992)

    Published 2023
    “…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
  19. 139

    Nonlinear fast convergence factor. by Guangwei Liu (181992)

    Published 2023
    “…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
  20. 140

    CEC2019 benchmark functions. by Guangwei Liu (181992)

    Published 2023
    “…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”