بدائل البحث:
feature optimization » resource optimization (توسيع البحث), feature elimination (توسيع البحث), structure optimization (توسيع البحث)
wolf optimization » whale optimization (توسيع البحث), swarm optimization (توسيع البحث), _ optimization (توسيع البحث)
task feature » based feature (توسيع البحث), each feature (توسيع البحث), a feature (توسيع البحث)
binary task » binary mask (توسيع البحث)
binary base » binary mask (توسيع البحث), ciliary base (توسيع البحث), binary image (توسيع البحث)
feature optimization » resource optimization (توسيع البحث), feature elimination (توسيع البحث), structure optimization (توسيع البحث)
wolf optimization » whale optimization (توسيع البحث), swarm optimization (توسيع البحث), _ optimization (توسيع البحث)
task feature » based feature (توسيع البحث), each feature (توسيع البحث), a feature (توسيع البحث)
binary task » binary mask (توسيع البحث)
binary base » binary mask (توسيع البحث), ciliary base (توسيع البحث), binary image (توسيع البحث)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
IRBMO vs. feature selection algorithm boxplot.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
9
The Pseudo-Code of the IRBMO Algorithm.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
10
IRBMO vs. meta-heuristic algorithms boxplot.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
11
-
12
Algorithm for generating hyperparameter.
منشور في 2024"…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
-
13
Results of machine learning algorithm.
منشور في 2024"…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
-
14
ROC comparison of machine learning algorithm.
منشور في 2024"…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
-
15
Pseudo Code of RBMO.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
16
P-value on CEC-2017(Dim = 30).
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
17
Memory storage behavior.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
18
Elite search behavior.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
19
Description of the datasets.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
20
S and V shaped transfer functions.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"