بدائل البحث:
feature optimization » resource optimization (توسيع البحث), feature elimination (توسيع البحث), structure optimization (توسيع البحث)
whale optimization » swarm optimization (توسيع البحث)
task feature » based feature (توسيع البحث), each feature (توسيع البحث), a feature (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
binary task » binary mask (توسيع البحث)
based whale » based whole (توسيع البحث), baleen whale (توسيع البحث), based halide (توسيع البحث)
feature optimization » resource optimization (توسيع البحث), feature elimination (توسيع البحث), structure optimization (توسيع البحث)
whale optimization » swarm optimization (توسيع البحث)
task feature » based feature (توسيع البحث), each feature (توسيع البحث), a feature (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
binary task » binary mask (توسيع البحث)
based whale » based whole (توسيع البحث), baleen whale (توسيع البحث), based halide (توسيع البحث)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
IRBMO vs. feature selection algorithm boxplot.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
9
The Pseudo-Code of the IRBMO Algorithm.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
10
IRBMO vs. meta-heuristic algorithms boxplot.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
11
-
12
Pseudo Code of RBMO.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
13
P-value on CEC-2017(Dim = 30).
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
14
Memory storage behavior.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
15
Elite search behavior.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
16
Description of the datasets.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
17
S and V shaped transfer functions.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
18
S- and V-Type transfer function diagrams.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
19
Collaborative hunting behavior.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
20
Friedman average rank sum test results.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"