Showing 81 - 100 results of 120 for search '(( binary task feature optimization algorithms ) OR ( binary data based optimization algorithm ))*', query time: 1.08s Refine Results
  1. 81

    Normalized computation rate for N = 10. by Hend Bayoumi (22693738)

    Published 2025
    “…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  2. 82

    Summary of Notations Used in this paper. by Hend Bayoumi (22693738)

    Published 2025
    “…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  3. 83

    Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment by Jianfang Cao (1881379)

    Published 2019
    “…<div><p>An image classification algorithm based on adaptive feature weight updating is proposed to address the low classification accuracy of the current single-feature classification algorithms and simple multifeature fusion algorithms. …”
  4. 84

    Design and implementation of the Multiple Criteria Decision Making (MCDM) algorithm for predicting the severity of COVID-19. by Jiaqing Luo (10975030)

    Published 2021
    “…<p>(A). The MCDM algorithm-Stage 1. Preprocessing, this stage is the process of refining the collected raw data to eliminate noise, including correlation analysis and feature selection based on P values. …”
  5. 85

    Sample image for illustration. by Indhumathi S. (19173013)

    Published 2024
    “…<div><p>Feature description is a critical task in Augmented Reality Tracking. …”
  6. 86

    Comparison analysis of computation time. by Indhumathi S. (19173013)

    Published 2024
    “…<div><p>Feature description is a critical task in Augmented Reality Tracking. …”
  7. 87

    Process flow diagram of CBFD. by Indhumathi S. (19173013)

    Published 2024
    “…<div><p>Feature description is a critical task in Augmented Reality Tracking. …”
  8. 88

    Precision recall curve. by Indhumathi S. (19173013)

    Published 2024
    “…<div><p>Feature description is a critical task in Augmented Reality Tracking. …”
  9. 89

    Quadratic polynomial in 2D image plane. by Indhumathi S. (19173013)

    Published 2024
    “…<div><p>Feature description is a critical task in Augmented Reality Tracking. …”
  10. 90

    DataSheet_1_Raman Spectroscopic Differentiation of Streptococcus pneumoniae From Other Streptococci Using Laboratory Strains and Clinical Isolates.pdf by Marcel Dahms (9160118)

    Published 2022
    “…Improvement of the classification rate is expected with optimized model parameters and algorithms as well as with a larger spectral data base for training.…”
  11. 91
  12. 92

    Triplet Matching for Estimating Causal Effects With Three Treatment Arms: A Comparative Study of Mortality by Trauma Center Level by Giovanni Nattino (561797)

    Published 2021
    “…Our algorithm outperforms the nearest neighbor algorithm and is shown to produce matched samples with total distance no larger than twice the optimal distance. …”
  13. 93
  14. 94
  15. 95

    Presentation_1_Modified GAN Augmentation Algorithms for the MRI-Classification of Myocardial Scar Tissue in Ischemic Cardiomyopathy.PPTX by Umesh C. Sharma (10785063)

    Published 2021
    “…Currently, there are no optimized deep-learning algorithms for the automated classification of scarred vs. normal myocardium. …”
  16. 96
  17. 97

    Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish) by Daniel Pérez Palau (11097348)

    Published 2024
    “…</p><h2>Model Architecture</h2><p dir="ltr">The model is based on <code>pysentimiento/robertuito-base-uncased</code> with the following modifications:</p><ul><li>A dense classification layer was added over the base model</li><li>Uses input IDs and attention masks as inputs</li><li>Generates a multi-class classification with 5 hate categories</li></ul><h2>Dataset</h2><p dir="ltr"><b>HATEMEDIA Dataset</b>: Custom hate speech dataset with categorization by type:</p><ul><li><b>Labels</b>: 5 hate type categories (0-4)</li><li><b>Preprocessing</b>:</li><li>Null values ​​removed from text and labels</li><li>Reindexing and relabeling (original labels are adjusted by subtracting 1)</li><li>Exclusion of category 2 during training</li><li>Conversion of category 5 to category 2</li></ul><h2>Training Process</h2><h3>Configuration</h3><ul><li><b>Batch size</b>: 128</li><li><b>Epoches</b>: 5</li><li><b>Learning rate</b>: 2e-5 with 10% warmup steps</li><li><b>Early stopping</b> with patience=2</li><li><b>Class weights</b>: Balanced to handle class imbalance</li></ul><h3>Custom Metrics</h3><ul><li>Recall for specific classes (focus on class 2)</li><li>Precision for specific classes (focus on class 3)</li><li>F1-score (weighted)</li><li>AUC-PR</li><li>Recall at precision=0.6 (class 3)</li><li>Precision at recall=0.6 (class 2)</li></ul><h2>Evaluation Metrics</h2><p dir="ltr">The model is evaluated using:</p><ul><li>Macro recall, precision, and F1-score</li><li>One-vs-Rest AUC</li><li>Accuracy</li><li>Per-class metrics</li><li>Confusion matrix</li><li>Full classification report</li></ul><h2>Technical Features</h2><h3>Data Preprocessing</h3><ul><li><b>Tokenization</b>: Maximum length of 128 tokens (truncation and padding)</li><li><b>Encoding of labels</b>: One-hot encoding for multi-class classification</li><li><b>Data split</b>: 80% training, 10% validation, 10% testing</li></ul><h3>Optimization</h3><ul><li><b>Optimizer</b>: Adam with linear warmup scheduling</li><li><b>Loss function</b>: Categorical Crossentropy (from_logits=True)</li><li><b>Imbalance handling</b>: Class weights computed automatically</li></ul><h2>Requirements</h2><p dir="ltr">The following Python packages are required:</p><ul><li>TensorFlow</li><li>Transformers</li><li>scikit-learn</li><li>pandas</li><li>datasets</li><li>matplotlib</li><li>seaborn</li><li>numpy</li></ul><h2>Usage</h2><ol><li><b>Data format</b>:</li></ol><ul><li>CSV file or Pandas DataFrame</li><li>Required column name: <code>text</code> (string type)</li><li>Required column name: Data type label (integer type, 0-4) - optional for evaluation</li></ul><ol><li><b>Text preprocessing</b>:</li></ol><ul><li>Automatic tokenization with a maximum length of 128 tokens</li><li>Long texts will be automatically truncated</li><li>Handling of special characters, URLs, and emojis included</li></ul><ol><li><b>Label encoding</b>:</li></ol><ul><li>The model classifies hate speech into 5 categories (0-4)</li><li><code>0</code>: Political hatred: Expressions directed against individuals or groups based on political orientation.…”
  18. 98
  19. 99
  20. 100

    Data_Sheet_1_Multiclass Classification Based on Combined Motor Imageries.pdf by Cecilia Lindig-León (7889777)

    Published 2020
    “…In this way, for each binary problem, the CSP algorithm produces features to determine if the specific body part is engaged in the task or not. …”