Showing 21 - 40 results of 43 for search '(( binary task feature selection algorithm ) OR ( binary task design optimization algorithm ))*', query time: 0.44s Refine Results
  1. 21

    Proposed Algorithm. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  2. 22

    Comparisons between ADAM and NADAM optimizers. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  3. 23
  4. 24
  5. 25

    An Example of a WPT-MEC Network. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  6. 26

    Related Work Summary. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  7. 27

    Simulation parameters. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  8. 28

    Training losses for N = 10. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  9. 29

    Normalized computation rate for N = 10. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  10. 30

    Summary of Notations Used in this paper. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  11. 31
  12. 32

    Sample image for illustration. by Indhumathi S. (19173013)

    Published 2024
    “…<div><p>Feature description is a critical task in Augmented Reality Tracking. This article introduces a Convex Based Feature Descriptor (CBFD) system designed to withstand rotation, lighting, and blur variations while remaining computationally efficient. …”
  13. 33

    Comparison analysis of computation time. by Indhumathi S. (19173013)

    Published 2024
    “…<div><p>Feature description is a critical task in Augmented Reality Tracking. This article introduces a Convex Based Feature Descriptor (CBFD) system designed to withstand rotation, lighting, and blur variations while remaining computationally efficient. …”
  14. 34

    Process flow diagram of CBFD. by Indhumathi S. (19173013)

    Published 2024
    “…<div><p>Feature description is a critical task in Augmented Reality Tracking. This article introduces a Convex Based Feature Descriptor (CBFD) system designed to withstand rotation, lighting, and blur variations while remaining computationally efficient. …”
  15. 35

    Precision recall curve. by Indhumathi S. (19173013)

    Published 2024
    “…<div><p>Feature description is a critical task in Augmented Reality Tracking. This article introduces a Convex Based Feature Descriptor (CBFD) system designed to withstand rotation, lighting, and blur variations while remaining computationally efficient. …”
  16. 36

    Quadratic polynomial in 2D image plane. by Indhumathi S. (19173013)

    Published 2024
    “…<div><p>Feature description is a critical task in Augmented Reality Tracking. This article introduces a Convex Based Feature Descriptor (CBFD) system designed to withstand rotation, lighting, and blur variations while remaining computationally efficient. …”
  17. 37
  18. 38
  19. 39

    Thesis-RAMIS-Figs_Slides by Felipe Santibañez-Leal (10967991)

    Published 2024
    “…<br><br>Finally, although the developed concepts, ideas and algorithms have been developed for inverse problems in geostatistics, the results are applicable to a wide range of disciplines where similar sampling problems need to be faced, included but not limited to design of communication networks, optimal integration and communication of swarms of robots and drones, remote sensing.…”
  20. 40