Search alternatives:
optimisation algorithm » optimization algorithms (Expand Search), maximization algorithm (Expand Search), identification algorithm (Expand Search)
process optimisation » process optimization (Expand Search), robust optimisation (Expand Search), process simulation (Expand Search)
guided optimization » based optimization (Expand Search), model optimization (Expand Search)
based process » based processes (Expand Search), based probes (Expand Search), based proteins (Expand Search)
binary task » binary mask (Expand Search)
lines based » lens based (Expand Search), genes based (Expand Search), lines used (Expand Search)
optimisation algorithm » optimization algorithms (Expand Search), maximization algorithm (Expand Search), identification algorithm (Expand Search)
process optimisation » process optimization (Expand Search), robust optimisation (Expand Search), process simulation (Expand Search)
guided optimization » based optimization (Expand Search), model optimization (Expand Search)
based process » based processes (Expand Search), based probes (Expand Search), based proteins (Expand Search)
binary task » binary mask (Expand Search)
lines based » lens based (Expand Search), genes based (Expand Search), lines used (Expand Search)
-
1
The Pseudo-Code of the IRBMO Algorithm.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
2
IRBMO vs. meta-heuristic algorithms boxplot.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
3
IRBMO vs. feature selection algorithm boxplot.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
4
Pseudo Code of RBMO.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
5
P-value on CEC-2017(Dim = 30).
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
6
Memory storage behavior.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
7
Elite search behavior.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
8
Description of the datasets.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
9
S and V shaped transfer functions.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
10
S- and V-Type transfer function diagrams.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
11
Collaborative hunting behavior.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
12
Friedman average rank sum test results.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
13
IRBMO vs. variant comparison adaptation data.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
14
Hybrid Computational Framework for Fault Detection in Coil Winding Manufacturing Process Using Knowledge Distillation
Published 2023“…</p> <p><br></p> <p>The conventional End of the Line (EoL) tests are insufficient in detecting faults during process resulting in increased manufacturing costs and lead times. …”
-
15
Models and Dataset
Published 2025“…Operating in a binary search space, TJO simulates intelligent and evasive movements of the prey to guide the population toward optimal solutions. …”
-
16
Supplementary Data: Biodiversity and Energy System Planning - Queensland 2025
Published 2025“…</li></ul><h3>Analysis Scripts</h3><p dir="ltr">Complete set of R scripts for reproducing all analyses:</p><ul><li><b>percent cost increase_line plot.R</b>: Creates visualizations of energy cost impacts under different conservation scenarios</li><li><b>Zonation curves.R</b>: Generates conservation performance curves and coverage statistics</li><li><b>NPV_bar_plot.R</b>: Produces economic analysis plots with Net Present Value breakdowns</li><li><b>domestic_export_map_iterations.R</b>: Creates spatial maps of renewable energy infrastructure for domestic and export scenarios</li></ul><h2>Technical Specifications</h2><h3>Data Formats</h3><ul><li><b>Spatial Data</b>: ESRI Geodatabase (.gdb), Shapefile (.shp), GeoTIFF (.tif)</li><li><b>Tabular Data</b>: CSV, Microsoft Excel (.xlsx, .xls)</li><li><b>Analysis Code</b>: R scripts (.R)</li></ul><h3>Software Requirements</h3><ul><li><b>R</b> (≥4.0.0) with packages: sf, dplyr, ggplot2, readr, readxl, tidyr, furrr, ozmaps, ggpattern</li><li><b>ESRI ArcGIS</b> or <b>QGIS</b> for geodatabase access and spatial analysis</li><li><b>Zonation</b> conservation planning software (for methodology understanding)</li></ul><h3>Hardware Recommendations</h3><ul><li><b>RAM</b>: 16GB minimum (32GB recommended for full spatial analysis)</li><li><b>Storage</b>: 15GB free space for data extraction and processing</li><li><b>CPU</b>: Multi-core processor recommended for parallel processing scripts</li></ul><h2>Detailed Description of the VRE Siting and Cost-Minimization Model</h2><p><br></p><p dir="ltr">This section provides an in-depth description of the Variable Renewable Energy (VRE) siting model, including the software, the core algorithm, and the optimisation process used to determine the least-cost, spatially constrained development trajectory for VRE infrastructure in Queensland, Australia.…”