يعرض 21 - 39 نتائج من 39 نتيجة بحث عن '(( binary task learning optimization algorithm ) OR ( binary base whale optimization algorithm ))*', وقت الاستعلام: 0.58s تنقيح النتائج
  1. 21

    Training losses for N = 10. حسب Hend Bayoumi (22693738)

    منشور في 2025
    الموضوعات:
  2. 22
  3. 23
  4. 24
  5. 25
  6. 26

    Summary of Notations Used in this paper. حسب Hend Bayoumi (22693738)

    منشور في 2025
    الموضوعات:
  7. 27

    Pseudo Code of RBMO. حسب Chenyi Zhu (9383370)

    منشور في 2025
    "…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
  8. 28

    P-value on CEC-2017(Dim = 30). حسب Chenyi Zhu (9383370)

    منشور في 2025
    "…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
  9. 29

    Memory storage behavior. حسب Chenyi Zhu (9383370)

    منشور في 2025
    "…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
  10. 30

    Elite search behavior. حسب Chenyi Zhu (9383370)

    منشور في 2025
    "…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
  11. 31

    Description of the datasets. حسب Chenyi Zhu (9383370)

    منشور في 2025
    "…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
  12. 32

    S and V shaped transfer functions. حسب Chenyi Zhu (9383370)

    منشور في 2025
    "…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
  13. 33

    S- and V-Type transfer function diagrams. حسب Chenyi Zhu (9383370)

    منشور في 2025
    "…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
  14. 34

    Collaborative hunting behavior. حسب Chenyi Zhu (9383370)

    منشور في 2025
    "…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
  15. 35

    Friedman average rank sum test results. حسب Chenyi Zhu (9383370)

    منشور في 2025
    "…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
  16. 36

    IRBMO vs. variant comparison adaptation data. حسب Chenyi Zhu (9383370)

    منشور في 2025
    "…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
  17. 37
  18. 38

    Models and Dataset حسب M RN (9866504)

    منشور في 2025
  19. 39

    Table 1_Creating an interactive database for nasopharyngeal carcinoma management: applying machine learning to evaluate metastasis and survival.docx حسب Yanbo Sun (2202439)

    منشور في 2024
    "…For the survival prediction tasks of OS and CSS, we constructed 45 combinations using nine survival machine learning algorithms. …"