بدائل البحث:
required optimization » guided optimization (توسيع البحث), resource optimization (توسيع البحث), feature optimization (توسيع البحث)
task required » task requiring (توسيع البحث), time required (توسيع البحث), also required (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
binary task » binary mask (توسيع البحث)
based swarm » based sars (توسيع البحث), based smart (توسيع البحث), based arm (توسيع البحث)
required optimization » guided optimization (توسيع البحث), resource optimization (توسيع البحث), feature optimization (توسيع البحث)
task required » task requiring (توسيع البحث), time required (توسيع البحث), also required (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
binary task » binary mask (توسيع البحث)
based swarm » based sars (توسيع البحث), based smart (توسيع البحث), based arm (توسيع البحث)
-
21
The architecture of LSTM cell.
منشور في 2023"…In this paper, a novel, and improved version of the Long Short-Term Memory (ILSTM) algorithm was proposed. The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …"
-
22
The architecture of ILSTM.
منشور في 2023"…In this paper, a novel, and improved version of the Long Short-Term Memory (ILSTM) algorithm was proposed. The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …"
-
23
Parameter setting for LSTM.
منشور في 2023"…In this paper, a novel, and improved version of the Long Short-Term Memory (ILSTM) algorithm was proposed. The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …"
-
24
LITNET-2020 data splitting approach.
منشور في 2023"…In this paper, a novel, and improved version of the Long Short-Term Memory (ILSTM) algorithm was proposed. The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …"
-
25
Transformation of symbolic features in NSL-KDD.
منشور في 2023"…In this paper, a novel, and improved version of the Long Short-Term Memory (ILSTM) algorithm was proposed. The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …"
-
26
the functioning of BRPSO.
منشور في 2025"…A sensitivity analysis of key RFD parameters, including frictional moment and rigid beam length, highlights their influence on seismic performance. The optimization problem is formulated based on the seismic energy dissipation concept, employing a modified binary and real-coded particle swarm optimization (BRPSO) algorithm. …"
-
27
Characteristic of 6- and 10-story SMRF [99,98].
منشور في 2025"…A sensitivity analysis of key RFD parameters, including frictional moment and rigid beam length, highlights their influence on seismic performance. The optimization problem is formulated based on the seismic energy dissipation concept, employing a modified binary and real-coded particle swarm optimization (BRPSO) algorithm. …"
-
28
The RFD’s behavior mechanism (2002).
منشور في 2025"…A sensitivity analysis of key RFD parameters, including frictional moment and rigid beam length, highlights their influence on seismic performance. The optimization problem is formulated based on the seismic energy dissipation concept, employing a modified binary and real-coded particle swarm optimization (BRPSO) algorithm. …"
-
29
-
30
GSE96058 information.
منشور في 2024"…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …"
-
31
The performance of classifiers.
منشور في 2024"…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …"