Search alternatives:
based optimization » whale optimization (Expand Search)
primary data » primary care (Expand Search)
tasks based » task based (Expand Search), cases based (Expand Search)
data based » data used (Expand Search)
based optimization » whale optimization (Expand Search)
primary data » primary care (Expand Search)
tasks based » task based (Expand Search), cases based (Expand Search)
data based » data used (Expand Search)
-
141
-
142
Supplementary file 1_Development of a venous thromboembolism risk prediction model for patients with primary membranous nephropathy based on machine learning.docx
Published 2025“…Objective<p>This study utilizes real-world data from primary membranous nephropathy (PMN) patients to preliminarily develop a venous thromboembolism (VTE) risk prediction model with machine learning. …”
-
143
Data Sheet 1_TBESO-BP: an improved regression model for predicting subclinical mastitis.pdf
Published 2025“…In this study, an enhanced neural backpropagation (BP) network model for predicting somatic cell count is introduced. The model is based on TBESO (Multi-strategy Boosted Snake Optimizer) and utilizes monthly Dairy Herd Improvement (DHI) data to forecast the status of subclinical mastitis in cows.…”
-
144
-
145
-
146
-
147
-
148
-
149
-
150
-
151
Label-Free Assessment of the Drug Resistance of Epithelial Ovarian Cancer Cells in a Microfluidic Holographic Flow Cytometer Boosted through Machine Learning
Published 2021“…Furthermore, it reflects strong potentialities to develop data-driven individualized chemotherapy treatments in the future.…”
-
152
Label-Free Assessment of the Drug Resistance of Epithelial Ovarian Cancer Cells in a Microfluidic Holographic Flow Cytometer Boosted through Machine Learning
Published 2021“…Furthermore, it reflects strong potentialities to develop data-driven individualized chemotherapy treatments in the future.…”
-
153
-
154
Supporting data for “The role of forest composition heterogeneity on temperate ecosystem carbon dynamic under climate change"
Published 2025“…The process includes (1) harmonizing Landsat 5, 7, 8, and Sentinel-2 data using the HLS algorithm, and (2) filling temporal gaps with an optimized object-based STARFM fusion algorithm. …”
-
155
-
156
-
157
Confusion matrix for multiclass classification.
Published 2025“…The experimental protocol involved eight participants performing tasks across four classes of scrolling text. To optimize system accuracy and speed, EEG and NIRS data were segmented into discrete temporal windows. …”
-
158
General flow chart of the proposed method.
Published 2025“…The experimental protocol involved eight participants performing tasks across four classes of scrolling text. To optimize system accuracy and speed, EEG and NIRS data were segmented into discrete temporal windows. …”
-
159
Image 2_Integrative prognostic modeling for stage III lung adenosquamous carcinoma post-tumor resection: machine learning insights and web-based implementation.png
Published 2024“…</p>Conclusions<p>This study presents a robust machine learning model and a web-based tool that assist healthcare practitioners in personalized clinical decision-making and treatment optimization for ASC patients following primary tumor resection.…”
-
160
Image 1_Integrative prognostic modeling for stage III lung adenosquamous carcinoma post-tumor resection: machine learning insights and web-based implementation.png
Published 2024“…</p>Conclusions<p>This study presents a robust machine learning model and a web-based tool that assist healthcare practitioners in personalized clinical decision-making and treatment optimization for ASC patients following primary tumor resection.…”