بدائل البحث:
processing optimization » process optimization (توسيع البحث), process optimisation (توسيع البحث), routing optimization (توسيع البحث)
wolf optimization » whale optimization (توسيع البحث), swarm optimization (توسيع البحث), _ optimization (توسيع البحث)
data processing » image processing (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
binary tb » binary b (توسيع البحث), binary _ (توسيع البحث)
processing optimization » process optimization (توسيع البحث), process optimisation (توسيع البحث), routing optimization (توسيع البحث)
wolf optimization » whale optimization (توسيع البحث), swarm optimization (توسيع البحث), _ optimization (توسيع البحث)
data processing » image processing (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
binary tb » binary b (توسيع البحث), binary _ (توسيع البحث)
-
21
-
22
The result of the Wilcoxon test of presented COFFO against compared methods.
منشور في 2022الموضوعات: -
23
-
24
Convergence graphs for ten CEC 2019 benchmark functions and direct comparison between COFFO and FFO.
منشور في 2022الموضوعات: -
25
-
26
-
27
Optimized Bayesian regularization-back propagation neural network using data-driven intrusion detection system in Internet of Things
منشور في 2025"…Hence, Binary Black Widow Optimization Algorithm (BBWOA) is proposed in this manuscript to improve the BRBPNN classifier that detects intrusion precisely. …"
-
28
-
29
-
30
Proposed Algorithm.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
31
-
32
Comparisons between ADAM and NADAM optimizers.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
33
-
34
-
35
The flowchart of the proposed algorithm.
منشور في 2024"…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …"
-
36
Event-driven data flow processing.
منشور في 2025"…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …"
-
37
-
38
-
39
-
40