Search alternatives:
model optimization » codon optimization (Expand Search), global optimization (Expand Search), wolf optimization (Expand Search)
based optimization » whale optimization (Expand Search)
primary data » primary care (Expand Search)
three model » three models (Expand Search), tree model (Expand Search), tree models (Expand Search)
data based » data used (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), wolf optimization (Expand Search)
based optimization » whale optimization (Expand Search)
primary data » primary care (Expand Search)
three model » three models (Expand Search), tree model (Expand Search), tree models (Expand Search)
data based » data used (Expand Search)
-
1
Features selected by optimization algorithms.
Published 2024“…Consequently, the prediction of BrC depends critically on the quick and precise processing of imaging data. The primary reason deep learning models are used in breast cancer detection is that they can produce findings more quickly and accurately than current machine learning-based techniques. …”
-
2
-
3
-
4
-
5
Python-Based Algorithm for Estimating NRTL Model Parameters with UNIFAC Model Simulation Results
Published 2025“…A major challenge in bioprocess simulation is the lack of physical and chemical property databases for biochemicals. A Python-based algorithm was developed for estimating the nonrandom two-liquid (NRTL) model parameters of aqueous binary systems in a straightforward manner from simplified molecular-input line-entry specification (SMILES) strings of substances in a system. …”
-
6
S1 Data -
Published 2024“…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
-
7
Parameter settings for algorithms.
Published 2024“…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
-
8
Parameter settings for algorithms.
Published 2024“…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
-
9
Average runtime of different algorithms.
Published 2024“…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
-
10
Average runtime of different algorithms.
Published 2024“…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
-
11
Flowchart of GJO-GWO algorithm.
Published 2024“…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
-
12
-
13
-
14
-
15
ROC curve for binary classification.
Published 2024“…Subsequently, a convolutional neural network model comprising four convolutional layers and two hidden layers was devised for classifying Alzheimer’s disease into three (3) distinct categories, namely mild cognitive impairment, Alzheimer’s disease, and normal controls. …”
-
16
Confusion matrix for binary classification.
Published 2024“…Subsequently, a convolutional neural network model comprising four convolutional layers and two hidden layers was devised for classifying Alzheimer’s disease into three (3) distinct categories, namely mild cognitive impairment, Alzheimer’s disease, and normal controls. …”
-
17
Routing policy based on path satisfaction.
Published 2025“…These enhancements aim to achieve optimal routing scheduling based on risk information. …”
-
18
-
19
-
20
Hybrid feature selection algorithm of CSCO-ROA.
Published 2024“…Consequently, the prediction of BrC depends critically on the quick and precise processing of imaging data. The primary reason deep learning models are used in breast cancer detection is that they can produce findings more quickly and accurately than current machine learning-based techniques. …”