بدائل البحث:
process optimization » model optimization (توسيع البحث)
codon optimization » wolf optimization (توسيع البحث)
time process » like process (توسيع البحث), time processing (توسيع البحث), entire process (توسيع البحث)
binary time » binary image (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
data codon » data code (توسيع البحث), data codes (توسيع البحث), data codings (توسيع البحث)
process optimization » model optimization (توسيع البحث)
codon optimization » wolf optimization (توسيع البحث)
time process » like process (توسيع البحث), time processing (توسيع البحث), entire process (توسيع البحث)
binary time » binary image (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
data codon » data code (توسيع البحث), data codes (توسيع البحث), data codings (توسيع البحث)
-
41
DataSheet_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx
منشور في 2024"…The accuracy of the optimal scenario for classifying samples with a cooking time of 30 minutes reached RCal2 = 0.86 and RVal2 = 0.84, with a Kappa value of 0.53. …"
-
42
-
43
PathOlOgics_RBCs Python Scripts.zip
منشور في 2023"…This process generated a ground-truth binary semantic segmentation mask and determined the bounding box coordinates (XYWH) for each cell. …"
-
44
Table_1_iRNA5hmC: The First Predictor to Identify RNA 5-Hydroxymethylcytosine Modifications Using Machine Learning.docx
منشور في 2020"…In this predictor, we introduced a sequence-based feature algorithm consisting of two feature representations, (1) k-mer spectrum and (2) positional nucleotide binary vector, to capture the sequential characteristics of 5hmC sites. …"
-
45
Seed mix selection model
منشور في 2022"…Classic genetic algorithms consider a population of chromosomes and apply principles of natural selection (selection, mutation, and crossover processes) to generate optimal solutions. …"
-
46
Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles
منشور في 2025"…</p><p dir="ltr"><b>Applications and Model Compatibility:</b></p><p dir="ltr">The dataset is optimized for use in supervised learning workflows and has been tested with algorithms such as:</p><p dir="ltr">Gradient Boosting Machines (GBM),</p><p dir="ltr">Support Vector Machines (SVM-RBF),</p><p dir="ltr">Random Forests, and</p><p dir="ltr">Principal Component Analysis (PCA) for feature reduction.…"