Showing 1 - 20 results of 20 for search '(( binary time required optimization algorithm ) OR ( binary ranked based optimization algorithm ))', query time: 0.64s Refine Results
  1. 1
  2. 2
  3. 3

    Proposed Algorithm. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  4. 4

    Comparisons between ADAM and NADAM optimizers. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  5. 5
  6. 6
  7. 7
  8. 8

    An Example of a WPT-MEC Network. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  9. 9

    Related Work Summary. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  10. 10

    Simulation parameters. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  11. 11

    Training losses for N = 10. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  12. 12

    Normalized computation rate for N = 10. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  13. 13

    Summary of Notations Used in this paper. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  14. 14

    <i>hi</i>PRS algorithm process flow. by Michela C. Massi (14599915)

    Published 2023
    “…From this dataset we can compute the MI between each interaction and the outcome and <b>(D)</b> obtain a ranked list (<i>I</i><sub><i>δ</i></sub>) based on this metric. …”
  15. 15

    Design and implementation of the Multiple Criteria Decision Making (MCDM) algorithm for predicting the severity of COVID-19. by Jiaqing Luo (10975030)

    Published 2021
    “…P <0.05 was considered statistically significant. (B). The MCDM algorithm-Stage 2. Feature Ranking, this stage is the process of using the TOPSIS method to rank features. …”
  16. 16
  17. 17

    Identification and quantitation of clinically relevant microbes in patient samples: Comparison of three k-mer based classifiers for speed, accuracy, and sensitivity by George S. Watts (7962206)

    Published 2019
    “…Adopting metagenomic analysis for clinical use requires that all aspects of the workflow are optimized and tested, including data analysis and computational time and resources. …”
  18. 18

    Data_Sheet_1_Prediction of Mental Health in Medical Workers During COVID-19 Based on Machine Learning.ZIP by Xiaofeng Wang (119575)

    Published 2021
    “…In this study, we propose a novel prediction model based on optimization algorithm and neural network, which can select and rank the most important factors that affect mental health of medical workers. …”
  19. 19

    Seed mix selection model by Bethanne Bruninga-Socolar (10923639)

    Published 2022
    “…</p> <p>  </p> <p>We applied the seed mix selection model using a binary genetic algorithm to select seed mixes (R package ‘GA’; Scrucca 2013; Scrucca 2017). …”
  20. 20

    PathOlOgics_RBCs Python Scripts.zip by Ahmed Elsafty (16943883)

    Published 2023
    “…However, this approach required a significant amount of focus, effort, and time. …”