يعرض 1 - 20 نتائج من 30 نتيجة بحث عن '(( binary time resource maximization algorithm ) OR ( binary case design optimization algorithm ))', وقت الاستعلام: 0.86s تنقيح النتائج
  1. 1

    MSE for ILSTM algorithm in binary classification. حسب Asmaa Ahmed Awad (16726315)

    منشور في 2023
    "…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
  2. 2
  3. 3

    Proposed Algorithm. حسب Hend Bayoumi (22693738)

    منشور في 2025
    الموضوعات:
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8

    An Example of a WPT-MEC Network. حسب Hend Bayoumi (22693738)

    منشور في 2025
    الموضوعات:
  9. 9

    Related Work Summary. حسب Hend Bayoumi (22693738)

    منشور في 2025
    الموضوعات:
  10. 10

    Simulation parameters. حسب Hend Bayoumi (22693738)

    منشور في 2025
    الموضوعات:
  11. 11

    Training losses for N = 10. حسب Hend Bayoumi (22693738)

    منشور في 2025
    الموضوعات:
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16

    Summary of Notations Used in this paper. حسب Hend Bayoumi (22693738)

    منشور في 2025
    الموضوعات:
  17. 17
  18. 18
  19. 19

    Summary of LITNET-2020 dataset. حسب Asmaa Ahmed Awad (16726315)

    منشور في 2023
    "…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
  20. 20

    SHAP analysis for LITNET-2020 dataset. حسب Asmaa Ahmed Awad (16726315)

    منشور في 2023
    "…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"