Search alternatives:
design optimization » bayesian optimization (Expand Search)
based optimization » whale optimization (Expand Search)
binary value » binary values (Expand Search), boundary value (Expand Search)
value design » game design (Expand Search), case design (Expand Search), glue designs (Expand Search)
binary base » binary mask (Expand Search), ciliary base (Expand Search), binary image (Expand Search)
base based » case based (Expand Search), blame based (Expand Search), made based (Expand Search)
design optimization » bayesian optimization (Expand Search)
based optimization » whale optimization (Expand Search)
binary value » binary values (Expand Search), boundary value (Expand Search)
value design » game design (Expand Search), case design (Expand Search), glue designs (Expand Search)
binary base » binary mask (Expand Search), ciliary base (Expand Search), binary image (Expand Search)
base based » case based (Expand Search), blame based (Expand Search), made based (Expand Search)
-
41
Small-scale dataset comparative analysis using the number of features selected.
Published 2023Subjects: -
42
-
43
-
44
-
45
-
46
-
47
-
48
Parameter settings of the comparison algorithms.
Published 2024“…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
49
IRBMO vs. meta-heuristic algorithms boxplot.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
50
IRBMO vs. feature selection algorithm boxplot.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
51
-
52
-
53
-
54
-
55
Plan frame of the house.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
56
Ablation test results.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
57
Hyperparameter selection test.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
58
Multiple index test results of different methods.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
59
Backtracking strategy diagram.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
60
Comparison of differences in literature methods.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”