Search alternatives:
design optimization » bayesian optimization (Expand Search)
based optimization » whale optimization (Expand Search)
values based » value based (Expand Search), values used (Expand Search), values ranged (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
design optimization » bayesian optimization (Expand Search)
based optimization » whale optimization (Expand Search)
values based » value based (Expand Search), values used (Expand Search), values ranged (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
-
121
Triplet Matching for Estimating Causal Effects With Three Treatment Arms: A Comparative Study of Mortality by Trauma Center Level
Published 2021“…We implement the evidence factors method for binary outcomes, which includes a randomization-based testing strategy and a sensitivity analysis for hidden bias in three-group matched designs. …”
-
122
-
123
Testing results for classifying AD, MCI and NC.
Published 2024“…Specifically, an image enhancement algorithm based on histogram equalization and bilateral filtering techniques was deployed to reduce noise and enhance the quality of the images. …”
-
124
Summary of existing CNN models.
Published 2024“…Specifically, an image enhancement algorithm based on histogram equalization and bilateral filtering techniques was deployed to reduce noise and enhance the quality of the images. …”
-
125
-
126
Sample image for illustration.
Published 2024“…This article introduces a Convex Based Feature Descriptor (CBFD) system designed to withstand rotation, lighting, and blur variations while remaining computationally efficient. …”
-
127
Comparison analysis of computation time.
Published 2024“…This article introduces a Convex Based Feature Descriptor (CBFD) system designed to withstand rotation, lighting, and blur variations while remaining computationally efficient. …”
-
128
Process flow diagram of CBFD.
Published 2024“…This article introduces a Convex Based Feature Descriptor (CBFD) system designed to withstand rotation, lighting, and blur variations while remaining computationally efficient. …”
-
129
Precision recall curve.
Published 2024“…This article introduces a Convex Based Feature Descriptor (CBFD) system designed to withstand rotation, lighting, and blur variations while remaining computationally efficient. …”
-
130
Quadratic polynomial in 2D image plane.
Published 2024“…This article introduces a Convex Based Feature Descriptor (CBFD) system designed to withstand rotation, lighting, and blur variations while remaining computationally efficient. …”
-
131
-
132
-
133
Data_Sheet_1_Physics-Inspired Optimization for Quadratic Unconstrained Problems Using a Digital Annealer.pdf
Published 2019“…<p>The Fujitsu Digital Annealer is designed to solve fully connected quadratic unconstrained binary optimization (QUBO) problems. …”
-
134
Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish)
Published 2024“…</p><h2>Model Architecture</h2><p dir="ltr">The model is based on <code>pysentimiento/robertuito-base-uncased</code> with the following modifications:</p><ul><li>A dense classification layer was added over the base model</li><li>Uses input IDs and attention masks as inputs</li><li>Generates a multi-class classification with 5 hate categories</li></ul><h2>Dataset</h2><p dir="ltr"><b>HATEMEDIA Dataset</b>: Custom hate speech dataset with categorization by type:</p><ul><li><b>Labels</b>: 5 hate type categories (0-4)</li><li><b>Preprocessing</b>:</li><li>Null values removed from text and labels</li><li>Reindexing and relabeling (original labels are adjusted by subtracting 1)</li><li>Exclusion of category 2 during training</li><li>Conversion of category 5 to category 2</li></ul><h2>Training Process</h2><h3>Configuration</h3><ul><li><b>Batch size</b>: 128</li><li><b>Epoches</b>: 5</li><li><b>Learning rate</b>: 2e-5 with 10% warmup steps</li><li><b>Early stopping</b> with patience=2</li><li><b>Class weights</b>: Balanced to handle class imbalance</li></ul><h3>Custom Metrics</h3><ul><li>Recall for specific classes (focus on class 2)</li><li>Precision for specific classes (focus on class 3)</li><li>F1-score (weighted)</li><li>AUC-PR</li><li>Recall at precision=0.6 (class 3)</li><li>Precision at recall=0.6 (class 2)</li></ul><h2>Evaluation Metrics</h2><p dir="ltr">The model is evaluated using:</p><ul><li>Macro recall, precision, and F1-score</li><li>One-vs-Rest AUC</li><li>Accuracy</li><li>Per-class metrics</li><li>Confusion matrix</li><li>Full classification report</li></ul><h2>Technical Features</h2><h3>Data Preprocessing</h3><ul><li><b>Tokenization</b>: Maximum length of 128 tokens (truncation and padding)</li><li><b>Encoding of labels</b>: One-hot encoding for multi-class classification</li><li><b>Data split</b>: 80% training, 10% validation, 10% testing</li></ul><h3>Optimization</h3><ul><li><b>Optimizer</b>: Adam with linear warmup scheduling</li><li><b>Loss function</b>: Categorical Crossentropy (from_logits=True)</li><li><b>Imbalance handling</b>: Class weights computed automatically</li></ul><h2>Requirements</h2><p dir="ltr">The following Python packages are required:</p><ul><li>TensorFlow</li><li>Transformers</li><li>scikit-learn</li><li>pandas</li><li>datasets</li><li>matplotlib</li><li>seaborn</li><li>numpy</li></ul><h2>Usage</h2><ol><li><b>Data format</b>:</li></ol><ul><li>CSV file or Pandas DataFrame</li><li>Required column name: <code>text</code> (string type)</li><li>Required column name: Data type label (integer type, 0-4) - optional for evaluation</li></ul><ol><li><b>Text preprocessing</b>:</li></ol><ul><li>Automatic tokenization with a maximum length of 128 tokens</li><li>Long texts will be automatically truncated</li><li>Handling of special characters, URLs, and emojis included</li></ul><ol><li><b>Label encoding</b>:</li></ol><ul><li>The model classifies hate speech into 5 categories (0-4)</li><li><code>0</code>: Political hatred: Expressions directed against individuals or groups based on political orientation.…”
-
135
Summary of LITNET-2020 dataset.
Published 2023“…In this paper, a novel, and improved version of the Long Short-Term Memory (ILSTM) algorithm was proposed. The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …”
-
136
SHAP analysis for LITNET-2020 dataset.
Published 2023“…In this paper, a novel, and improved version of the Long Short-Term Memory (ILSTM) algorithm was proposed. The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …”
-
137
Comparison of intrusion detection systems.
Published 2023“…In this paper, a novel, and improved version of the Long Short-Term Memory (ILSTM) algorithm was proposed. The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …”
-
138
Parameter setting for CBOA and PSO.
Published 2023“…In this paper, a novel, and improved version of the Long Short-Term Memory (ILSTM) algorithm was proposed. The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …”
-
139
NSL-KDD dataset description.
Published 2023“…In this paper, a novel, and improved version of the Long Short-Term Memory (ILSTM) algorithm was proposed. The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …”
-
140
The architecture of LSTM cell.
Published 2023“…In this paper, a novel, and improved version of the Long Short-Term Memory (ILSTM) algorithm was proposed. The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …”