Search alternatives:
guided optimization » based optimization (Expand Search), model optimization (Expand Search)
under optimization » model optimization (Expand Search), after optimization (Expand Search), other optimization (Expand Search)
values under » values used (Expand Search), values per (Expand Search), values over (Expand Search)
guided optimization » based optimization (Expand Search), model optimization (Expand Search)
under optimization » model optimization (Expand Search), after optimization (Expand Search), other optimization (Expand Search)
values under » values used (Expand Search), values per (Expand Search), values over (Expand Search)
-
21
-
22
-
23
Small-scale dataset comparative analysis using the number of features selected.
Published 2023Subjects: -
24
-
25
-
26
-
27
ROC curve for binary classification.
Published 2024“…The proposed model yielded notable results, such as an accuracy of 93.45% and an area under the curve value of 0.99 when trained on the three classes. …”
-
28
Confusion matrix for binary classification.
Published 2024“…The proposed model yielded notable results, such as an accuracy of 93.45% and an area under the curve value of 0.99 when trained on the three classes. …”
-
29
-
30
Plan frame of the house.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
31
Ablation test results.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
32
Hyperparameter selection test.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
33
Multiple index test results of different methods.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
34
Backtracking strategy diagram.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
35
Comparison of differences in literature methods.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
36
New building interior space layout model flow.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
37
Schematic of iteration process of IDE-IIGA.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
38
Schematic diagram of IGA chromosome coding.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
39
-
40