Search alternatives:
model optimization » codon optimization (Expand Search), global optimization (Expand Search), wolf optimization (Expand Search)
based optimization » whale optimization (Expand Search)
primary created » primarily treated (Expand Search), primary treatment (Expand Search)
binary var » binary pairs (Expand Search)
var model » a model (Expand Search), sir model (Expand Search), our model (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), wolf optimization (Expand Search)
based optimization » whale optimization (Expand Search)
primary created » primarily treated (Expand Search), primary treatment (Expand Search)
binary var » binary pairs (Expand Search)
var model » a model (Expand Search), sir model (Expand Search), our model (Expand Search)
-
1
Parameter settings for algorithms.
Published 2024“…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
-
2
Parameter settings for algorithms.
Published 2024“…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
-
3
Average runtime of different algorithms.
Published 2024“…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
-
4
Average runtime of different algorithms.
Published 2024“…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
-
5
Flowchart of GJO-GWO algorithm.
Published 2024“…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
-
6
Case 2: PADR with load scheduling.
Published 2024“…MATLAB is used to do a load scheduling simulation for home appliances based on the OAWDO algorithm. By contrasting it with other algorithms, including the genetic algorithm (GA), the whale optimization algorithm (WOA), the fire-fly optimization algorithm (FFOA), and the wind-driven optimization (WDO) algorithms, the effectiveness of the OAWDO technique is supported. …”
-
7
Case 1: PADR evaluation without scheduling.
Published 2024“…MATLAB is used to do a load scheduling simulation for home appliances based on the OAWDO algorithm. By contrasting it with other algorithms, including the genetic algorithm (GA), the whale optimization algorithm (WOA), the fire-fly optimization algorithm (FFOA), and the wind-driven optimization (WDO) algorithms, the effectiveness of the OAWDO technique is supported. …”
-
8
SPVE hourly varying irradiance.
Published 2024“…MATLAB is used to do a load scheduling simulation for home appliances based on the OAWDO algorithm. By contrasting it with other algorithms, including the genetic algorithm (GA), the whale optimization algorithm (WOA), the fire-fly optimization algorithm (FFOA), and the wind-driven optimization (WDO) algorithms, the effectiveness of the OAWDO technique is supported. …”
-
9
Hourly varying ambient temperature.
Published 2024“…MATLAB is used to do a load scheduling simulation for home appliances based on the OAWDO algorithm. By contrasting it with other algorithms, including the genetic algorithm (GA), the whale optimization algorithm (WOA), the fire-fly optimization algorithm (FFOA), and the wind-driven optimization (WDO) algorithms, the effectiveness of the OAWDO technique is supported. …”
-
10
Estimated SPVE generation.
Published 2024“…MATLAB is used to do a load scheduling simulation for home appliances based on the OAWDO algorithm. By contrasting it with other algorithms, including the genetic algorithm (GA), the whale optimization algorithm (WOA), the fire-fly optimization algorithm (FFOA), and the wind-driven optimization (WDO) algorithms, the effectiveness of the OAWDO technique is supported. …”
-
11
Case 2: Hourly scheduled load profile.
Published 2024“…MATLAB is used to do a load scheduling simulation for home appliances based on the OAWDO algorithm. By contrasting it with other algorithms, including the genetic algorithm (GA), the whale optimization algorithm (WOA), the fire-fly optimization algorithm (FFOA), and the wind-driven optimization (WDO) algorithms, the effectiveness of the OAWDO technique is supported. …”
-
12
Storage batteries charging level.
Published 2024“…MATLAB is used to do a load scheduling simulation for home appliances based on the OAWDO algorithm. By contrasting it with other algorithms, including the genetic algorithm (GA), the whale optimization algorithm (WOA), the fire-fly optimization algorithm (FFOA), and the wind-driven optimization (WDO) algorithms, the effectiveness of the OAWDO technique is supported. …”
-
13
Utility pricing scheme.
Published 2024“…MATLAB is used to do a load scheduling simulation for home appliances based on the OAWDO algorithm. By contrasting it with other algorithms, including the genetic algorithm (GA), the whale optimization algorithm (WOA), the fire-fly optimization algorithm (FFOA), and the wind-driven optimization (WDO) algorithms, the effectiveness of the OAWDO technique is supported. …”
-
14
Detailed information of benchmark functions.
Published 2024“…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
-
15
Evaluation metrics of the models’ performance.
Published 2024“…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
-
16
Detailed information of datasets.
Published 2024“…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
-
17
Friedman test results.
Published 2024“…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
-
18
Average number of selected features.
Published 2024“…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
-
19
Wilcoxon rank sum test results.
Published 2024“…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
-
20
Wilcoxon rank sum test results.
Published 2024“…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”