Search alternatives:
process optimization » model optimization (Expand Search)
while optimization » whale optimization (Expand Search), wolf optimization (Expand Search), phase optimization (Expand Search)
waste process » waste processing (Expand Search), step process (Expand Search), whole process (Expand Search)
binary waste » binary data (Expand Search), binary mask (Expand Search)
binary d » binary _ (Expand Search), binary b (Expand Search)
d while » a while (Expand Search), red while (Expand Search), de chile (Expand Search)
process optimization » model optimization (Expand Search)
while optimization » whale optimization (Expand Search), wolf optimization (Expand Search), phase optimization (Expand Search)
waste process » waste processing (Expand Search), step process (Expand Search), whole process (Expand Search)
binary waste » binary data (Expand Search), binary mask (Expand Search)
binary d » binary _ (Expand Search), binary b (Expand Search)
d while » a while (Expand Search), red while (Expand Search), de chile (Expand Search)
-
1
-
2
Data_Sheet_1_Posiform planting: generating QUBO instances for benchmarking.pdf
Published 2023“…<p>We are interested in benchmarking both quantum annealing and classical algorithms for minimizing quadratic unconstrained binary optimization (QUBO) problems. …”
-
3
-
4
-
5
-
6
Thesis-RAMIS-Figs_Slides
Published 2024“…From the results obtained across these three real scenarios explored in this thesis, it is possible to see that the proposed methodology achieves better performances than sampling in a structured regular grid (used as a conventional rule for sampling) in terms of both error in image reconstruction and global economic value, when considering the economic revenue of processing the ore and dumping the waste. <br><br>It is important to emphasize that no previous work have addressed the optimal sensing problem covered in this thesis for characterization of geological fields in the context of \emph{<i>MPS</i>}. …”
-
7
Image1_Applying the Hubbard-Stratonovich Transformation to Solve Scheduling Problems Under Inequality Constraints With Quantum Annealing.TIF
Published 2021“…Its current hardware implementation relies on D-Wave’s Quantum Processing Units, which are limited in terms of number of qubits and architecture while being restricted to solving quadratic unconstrained binary optimization (QUBO) problems. …”
-
8
Image3_Applying the Hubbard-Stratonovich Transformation to Solve Scheduling Problems Under Inequality Constraints With Quantum Annealing.TIF
Published 2021“…Its current hardware implementation relies on D-Wave’s Quantum Processing Units, which are limited in terms of number of qubits and architecture while being restricted to solving quadratic unconstrained binary optimization (QUBO) problems. …”
-
9
Image2_Applying the Hubbard-Stratonovich Transformation to Solve Scheduling Problems Under Inequality Constraints With Quantum Annealing.TIF
Published 2021“…Its current hardware implementation relies on D-Wave’s Quantum Processing Units, which are limited in terms of number of qubits and architecture while being restricted to solving quadratic unconstrained binary optimization (QUBO) problems. …”
-
10
DataSheet1_Applying the Hubbard-Stratonovich Transformation to Solve Scheduling Problems Under Inequality Constraints With Quantum Annealing.pdf
Published 2021“…Its current hardware implementation relies on D-Wave’s Quantum Processing Units, which are limited in terms of number of qubits and architecture while being restricted to solving quadratic unconstrained binary optimization (QUBO) problems. …”
-
11
PathOlOgics_RBCs Python Scripts.zip
Published 2023“…</p><p dir="ltr">In terms of classification, a second algorithm was developed and employed to preliminary sort or group the individual cells (after excluding the overlapping cells manually) into different categories using five geometric measurements applied to the extracted contour from each binary image mask (see PathOlOgics_script_2; preliminary shape measurements). …”
-
12
Table 1_Heavy metal biomarkers and their impact on hearing loss risk: a machine learning framework analysis.docx
Published 2025“…Multiple machine learning algorithms, including Random Forest, XGBoost, Gradient Boosting, Logistic Regression, CatBoost, and MLP, were optimized and evaluated. …”