يعرض 1 - 19 نتائج من 19 نتيجة بحث عن '(( binary water process optimization algorithm ) OR ( binary data wolf optimization algorithm ))', وقت الاستعلام: 0.63s تنقيح النتائج
  1. 1
  2. 2

    Hyperparameters of the LSTM Model. حسب Ahmed M. Elshewey (21463867)

    منشور في 2025
    "…The capacity to confront and overcome this obstacle is where machine learning and metaheuristic algorithms shine. This study introduces the Adaptive Dynamic Particle Swarm Optimization enhanced with the Guided Whale Optimization Algorithm (AD-PSO-Guided WOA) for rainfall prediction. …"
  3. 3

    The AD-PSO-Guided WOA LSTM framework. حسب Ahmed M. Elshewey (21463867)

    منشور في 2025
    "…The capacity to confront and overcome this obstacle is where machine learning and metaheuristic algorithms shine. This study introduces the Adaptive Dynamic Particle Swarm Optimization enhanced with the Guided Whale Optimization Algorithm (AD-PSO-Guided WOA) for rainfall prediction. …"
  4. 4

    Prediction results of individual models. حسب Ahmed M. Elshewey (21463867)

    منشور في 2025
    "…The capacity to confront and overcome this obstacle is where machine learning and metaheuristic algorithms shine. This study introduces the Adaptive Dynamic Particle Swarm Optimization enhanced with the Guided Whale Optimization Algorithm (AD-PSO-Guided WOA) for rainfall prediction. …"
  5. 5

    Classification performance after optimization. حسب Amal H. Alharbi (21755906)

    منشور في 2025
    "…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
  6. 6

    ANOVA test for optimization results. حسب Amal H. Alharbi (21755906)

    منشور في 2025
    "…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
  7. 7

    Wilcoxon test results for optimization. حسب Amal H. Alharbi (21755906)

    منشور في 2025
    "…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
  8. 8

    The flowchart of the proposed algorithm. حسب Muhammad Ayyaz Sheikh (18610943)

    منشور في 2024
    "…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …"
  9. 9

    Wilcoxon test results for feature selection. حسب Amal H. Alharbi (21755906)

    منشور في 2025
    "…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
  10. 10

    Feature selection metrics and their definitions. حسب Amal H. Alharbi (21755906)

    منشور في 2025
    "…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
  11. 11

    Statistical summary of all models. حسب Amal H. Alharbi (21755906)

    منشور في 2025
    "…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
  12. 12

    Feature selection results. حسب Amal H. Alharbi (21755906)

    منشور في 2025
    "…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
  13. 13

    ANOVA test for feature selection. حسب Amal H. Alharbi (21755906)

    منشور في 2025
    "…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
  14. 14

    Classification performance of ML and DL models. حسب Amal H. Alharbi (21755906)

    منشور في 2025
    "…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
  15. 15

    Summary of literature review. حسب Muhammad Ayyaz Sheikh (18610943)

    منشور في 2024
    "…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …"
  16. 16

    Topic description. حسب Muhammad Ayyaz Sheikh (18610943)

    منشور في 2024
    "…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …"
  17. 17

    Notations along with their descriptions. حسب Muhammad Ayyaz Sheikh (18610943)

    منشور في 2024
    "…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …"
  18. 18

    Detail of the topics extracted from DUC2002. حسب Muhammad Ayyaz Sheikh (18610943)

    منشور في 2024
    "…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …"
  19. 19

    Table_1_An efficient decision support system for leukemia identification utilizing nature-inspired deep feature optimization.pdf حسب Muhammad Awais (263096)

    منشور في 2024
    "…Next, a hybrid feature extraction approach is presented leveraging transfer learning from selected deep neural network models, InceptionV3 and DenseNet201, to extract comprehensive feature sets. To optimize feature selection, a customized binary Grey Wolf Algorithm is utilized, achieving an impressive 80% reduction in feature size while preserving key discriminative information. …"