Search alternatives:
selection algorithm » detection algorithm (Expand Search), detection algorithms (Expand Search)
resource selection » resource allocation (Expand Search), feature selection (Expand Search)
based optimization » whale optimization (Expand Search)
water resource » water resources (Expand Search), water sources (Expand Search), natural resource (Expand Search)
binary water » binary data (Expand Search), lunar water (Expand Search)
binary task » binary mask (Expand Search)
task based » risk based (Expand Search)
selection algorithm » detection algorithm (Expand Search), detection algorithms (Expand Search)
resource selection » resource allocation (Expand Search), feature selection (Expand Search)
based optimization » whale optimization (Expand Search)
water resource » water resources (Expand Search), water sources (Expand Search), natural resource (Expand Search)
binary water » binary data (Expand Search), lunar water (Expand Search)
binary task » binary mask (Expand Search)
task based » risk based (Expand Search)
-
1
-
2
Proposed Algorithm.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
-
3
Comparisons between ADAM and NADAM optimizers.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
-
4
The Pseudo-Code of the IRBMO Algorithm.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
5
IRBMO vs. meta-heuristic algorithms boxplot.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
6
IRBMO vs. feature selection algorithm boxplot.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
7
Hyperparameters of the LSTM Model.
Published 2025“…This effectively balances exploration and exploitation, and addresses the early convergence problem of the original algorithms. To choose the most crucial characteristics of the dataset, the feature selection method employs the binary format of AD-PSO-Guided WOA. …”
-
8
The AD-PSO-Guided WOA LSTM framework.
Published 2025“…This effectively balances exploration and exploitation, and addresses the early convergence problem of the original algorithms. To choose the most crucial characteristics of the dataset, the feature selection method employs the binary format of AD-PSO-Guided WOA. …”
-
9
Prediction results of individual models.
Published 2025“…This effectively balances exploration and exploitation, and addresses the early convergence problem of the original algorithms. To choose the most crucial characteristics of the dataset, the feature selection method employs the binary format of AD-PSO-Guided WOA. …”
-
10
An Example of a WPT-MEC Network.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
-
11
Related Work Summary.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
-
12
Simulation parameters.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
-
13
Training losses for N = 10.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
-
14
Normalized computation rate for N = 10.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
-
15
Summary of Notations Used in this paper.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
-
16
-
17
Feature selection results.
Published 2025“…This study presents a novel hybrid metaheuristic framework that combines Dipper Throated Optimization (DTO), a bio-inspired algorithm modeled on bird foraging behavior, with Polar Rose Search (PRS) to enhance deep learning models in predictive water quality assessment. …”
-
18
Pseudo Code of RBMO.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
19
P-value on CEC-2017(Dim = 30).
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
20
Memory storage behavior.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”