Showing 1 - 9 results of 9 for search '(( binary wave process optimization algorithm ) OR ( binary naive model optimization algorithm ))*', query time: 0.51s Refine Results
  1. 1

    Effects of Class Imbalance and Data Scarcity on the Performance of Binary Classification Machine Learning Models Developed Based on ToxCast/Tox21 Assay Data by Changhun Kim (682542)

    Published 2022
    “…An assay matrix based on CI and DS was prepared for 335 assays with biologically intended target information, and 28 CI assays and 3 DS assays were selected. Thirty models established by combining five molecular fingerprints (i.e., Morgan, MACCS, RDKit, Pattern, and Layered) and six algorithms [i.e., gradient boosting tree, random forest (RF), multi-layered perceptron, <i>k</i>-nearest neighbor, logistic regression, and naive Bayes] were trained using the selected assay data set. …”
  2. 2
  3. 3
  4. 4

    MCLP_quantum_annealer_V0.5 by Anonymous Anonymous (4854526)

    Published 2025
    “…Theoretical and applied experiments are conducted using four solvers: QBSolv, D-Wave Hybrid binary quadratic model 2, D-Wave Advantage system 4.1, and Gurobi. …”
  5. 5

    Image1_Applying the Hubbard-Stratonovich Transformation to Solve Scheduling Problems Under Inequality Constraints With Quantum Annealing.TIF by Sizhuo Yu (11429743)

    Published 2021
    “…Its current hardware implementation relies on D-Wave’s Quantum Processing Units, which are limited in terms of number of qubits and architecture while being restricted to solving quadratic unconstrained binary optimization (QUBO) problems. …”
  6. 6

    Image3_Applying the Hubbard-Stratonovich Transformation to Solve Scheduling Problems Under Inequality Constraints With Quantum Annealing.TIF by Sizhuo Yu (11429743)

    Published 2021
    “…Its current hardware implementation relies on D-Wave’s Quantum Processing Units, which are limited in terms of number of qubits and architecture while being restricted to solving quadratic unconstrained binary optimization (QUBO) problems. …”
  7. 7

    Image2_Applying the Hubbard-Stratonovich Transformation to Solve Scheduling Problems Under Inequality Constraints With Quantum Annealing.TIF by Sizhuo Yu (11429743)

    Published 2021
    “…Its current hardware implementation relies on D-Wave’s Quantum Processing Units, which are limited in terms of number of qubits and architecture while being restricted to solving quadratic unconstrained binary optimization (QUBO) problems. …”
  8. 8

    DataSheet1_Applying the Hubbard-Stratonovich Transformation to Solve Scheduling Problems Under Inequality Constraints With Quantum Annealing.pdf by Sizhuo Yu (11429743)

    Published 2021
    “…Its current hardware implementation relies on D-Wave’s Quantum Processing Units, which are limited in terms of number of qubits and architecture while being restricted to solving quadratic unconstrained binary optimization (QUBO) problems. …”
  9. 9

    Supplementary Material 8 by Nishitha R Kumar (19750617)

    Published 2025
    “…</p><p dir="ltr">When applied to AMR prediction, SMOTE enhances the ability of classification models to accurately identify resistant <i>Escherichia coli</i> strains by balancing the dataset, ensuring that machine learning algorithms do not overlook rare resistance patterns. …”