Search alternatives:
based optimization » whale optimization (Expand Search)
data bayesian » a bayesian (Expand Search), art bayesian (Expand Search)
binary whole » binary people (Expand Search)
primary data » primary care (Expand Search)
whole based » home based (Expand Search), choline based (Expand Search), people based (Expand Search)
based optimization » whale optimization (Expand Search)
data bayesian » a bayesian (Expand Search), art bayesian (Expand Search)
binary whole » binary people (Expand Search)
primary data » primary care (Expand Search)
whole based » home based (Expand Search), choline based (Expand Search), people based (Expand Search)
-
1
-
2
Models’ performance without optimization.
Published 2024“…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
-
3
RNN performance comparison with/out optimization.
Published 2024“…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
-
4
XNet: A Bayesian Approach to Extracted Ion Chromatogram Clustering for Precursor Mass Spectrometry Data
Published 2019“…While tandem mass spectrometry remains a primary method for identification and quantification, species-resolved precursor data provides a rich source of unexploited information. …”
-
5
-
6
<i>hi</i>PRS algorithm process flow.
Published 2023“…The sequences can include from a single SNP-allele pair up to a maximum number of pairs defined by the user (<i>l</i><sub>max</sub>). <b>(C)</b> The whole training data is then scanned, searching for these sequences and deriving a re-encoded dataset where interaction terms are binary features (i.e., 1 if sequence <i>i</i> is observed in <i>j</i>-th patient genotype, 0 otherwise). …”
-
7
Proposed method approach.
Published 2024“…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
-
8
LSTM model performance.
Published 2024“…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
-
9
Descriptive statistics.
Published 2024“…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
-
10
CNN-LSTM Model performance.
Published 2024“…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
-
11
MLP Model performance.
Published 2024“…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
-
12
RNN Model performance.
Published 2024“…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
-
13
CNN Model performance.
Published 2024“…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
-
14
Bi-directional LSTM Model performance.
Published 2024“…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
-
15
-
16
-
17
DataSheet_2_Optimising Treatment Outcomes for Children and Adults Through Rapid Genome Sequencing of Sepsis Pathogens. A Study Protocol for a Prospective, Multi-Centre Trial (DIREC...
Published 2021“…This pilot study will yield key feasibility data to inform further, urgently needed sepsis studies. …”
-
18
DataSheet_1_Optimising Treatment Outcomes for Children and Adults Through Rapid Genome Sequencing of Sepsis Pathogens. A Study Protocol for a Prospective, Multi-Centre Trial (DIREC...
Published 2021“…This pilot study will yield key feasibility data to inform further, urgently needed sepsis studies. …”
-
19
-
20
Data_Sheet_1_Alzheimer’s Disease Diagnosis and Biomarker Analysis Using Resting-State Functional MRI Functional Brain Network With Multi-Measures Features and Hippocampal Subfield...
Published 2022“…Finally, we implemented and compared the different feature selection algorithms to integrate the structural features, brain networks, and voxel features to optimize the diagnostic identifications of AD using support vector machine (SVM) classifiers. …”