Showing 1 - 20 results of 21 for search '(( binary wise feature classification algorithm ) OR ( binary image scale optimization algorithm ))', query time: 0.61s Refine Results
  1. 1
  2. 2
  3. 3

    Important citation identification by exploiting content and section-wise in-text citation count by Shahzad Nazir (8538129)

    Published 2020
    “…This research presents a novel approach for binary citation classification by exploiting section-wise in-text citation frequencies, similarity score, and overall citation count-based features. …”
  4. 4
  5. 5
  6. 6
  7. 7

    Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment by Jianfang Cao (1881379)

    Published 2019
    “…The MapReduce parallel programming model on the Hadoop platform is used to perform an adaptive fusion of hue, local binary pattern (LBP) and scale-invariant feature transform (SIFT) features extracted from images to derive optimal combinations of weights. …”
  8. 8
  9. 9
  10. 10

    Sample image for illustration. by Indhumathi S. (19173013)

    Published 2024
    “…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”
  11. 11
  12. 12

    Data_Sheet_1_Multiclass Classification Based on Combined Motor Imageries.pdf by Cecilia Lindig-León (7889777)

    Published 2020
    “…In this way, for each binary problem, the CSP algorithm produces features to determine if the specific body part is engaged in the task or not. …”
  13. 13

    Quadratic polynomial in 2D image plane. by Indhumathi S. (19173013)

    Published 2024
    “…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”
  14. 14

    Steps in the extraction of 14 coordinates from the CT slices for the curved MPR. by Linus Woitke (22783534)

    Published 2025
    “…The image is then cleaned in c) using morphological filtering with an <i>opening</i> operation to remove small-scale noise. …”
  15. 15
  16. 16
  17. 17
  18. 18

    Comparison analysis of computation time. by Indhumathi S. (19173013)

    Published 2024
    “…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”
  19. 19

    Process flow diagram of CBFD. by Indhumathi S. (19173013)

    Published 2024
    “…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”
  20. 20

    Precision recall curve. by Indhumathi S. (19173013)

    Published 2024
    “…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”