Search alternatives:
large decrease » marked decrease (Expand Search), large degree (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
c large » _ large (Expand Search), i large (Expand Search), b large (Expand Search)
a large » _ large (Expand Search)
large decrease » marked decrease (Expand Search), large degree (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
c large » _ large (Expand Search), i large (Expand Search), b large (Expand Search)
a large » _ large (Expand Search)
-
21
Large and Pressure-Dependent <i>c-</i>Axis Piezoresistivity of Highly Oriented Pyrolytic Graphite near Zero Pressure
Published 2024“…The <i>c-</i>axis piezoresistivity of microscale highly oriented pyrolytic graphite (HOPG) is found to show a large value of 5.68 × 10<sup>–5</sup> kPa<sup>–1</sup> near zero pressure and decreases by 2 orders of magnitude to the established value of ∼10<sup>–7</sup> kPa<sup>–1</sup> when the pressure increases to 200 MPa. …”
-
22
-
23
-
24
-
25
-
26
High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles
Published 2025“…Traditional solutions to this issue, such as doping with opacifiers or fibers, often increase thermal conductivity and density. To increase the thermal stability of standard aerogels comprising small full-density SiO<sub>2</sub> nanoparticles (SFPs) (typically 2–15 nm in diameter), SiO<sub>2</sub> aerogels were doped with large hollow SiO<sub>2</sub> nanoparticles (LHPs) with diameters of 100–250 nm. …”
-
27
High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles
Published 2025“…Traditional solutions to this issue, such as doping with opacifiers or fibers, often increase thermal conductivity and density. To increase the thermal stability of standard aerogels comprising small full-density SiO<sub>2</sub> nanoparticles (SFPs) (typically 2–15 nm in diameter), SiO<sub>2</sub> aerogels were doped with large hollow SiO<sub>2</sub> nanoparticles (LHPs) with diameters of 100–250 nm. …”
-
28
High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles
Published 2025“…Traditional solutions to this issue, such as doping with opacifiers or fibers, often increase thermal conductivity and density. To increase the thermal stability of standard aerogels comprising small full-density SiO<sub>2</sub> nanoparticles (SFPs) (typically 2–15 nm in diameter), SiO<sub>2</sub> aerogels were doped with large hollow SiO<sub>2</sub> nanoparticles (LHPs) with diameters of 100–250 nm. …”
-
29
High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles
Published 2025“…Traditional solutions to this issue, such as doping with opacifiers or fibers, often increase thermal conductivity and density. To increase the thermal stability of standard aerogels comprising small full-density SiO<sub>2</sub> nanoparticles (SFPs) (typically 2–15 nm in diameter), SiO<sub>2</sub> aerogels were doped with large hollow SiO<sub>2</sub> nanoparticles (LHPs) with diameters of 100–250 nm. …”
-
30
High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles
Published 2025“…Traditional solutions to this issue, such as doping with opacifiers or fibers, often increase thermal conductivity and density. To increase the thermal stability of standard aerogels comprising small full-density SiO<sub>2</sub> nanoparticles (SFPs) (typically 2–15 nm in diameter), SiO<sub>2</sub> aerogels were doped with large hollow SiO<sub>2</sub> nanoparticles (LHPs) with diameters of 100–250 nm. …”
-
31
High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles
Published 2025“…Traditional solutions to this issue, such as doping with opacifiers or fibers, often increase thermal conductivity and density. To increase the thermal stability of standard aerogels comprising small full-density SiO<sub>2</sub> nanoparticles (SFPs) (typically 2–15 nm in diameter), SiO<sub>2</sub> aerogels were doped with large hollow SiO<sub>2</sub> nanoparticles (LHPs) with diameters of 100–250 nm. …”
-
32
Hydrogen-Bonding Trends in a Bithiophene with 3- and/or 4‑Pyridyl Substituents
Published 2023“…To improve the charge-carrier transport capabilities of thin-film organic materials, the intermolecular electronic couplings in the material should be maximized. Decreasing intermolecular distance while maintaining proper orbital overlap in highly conjugated aromatic molecules has so far been a successful way to increase electronic coupling. …”
-
33
Hydrogen-Bonding Trends in a Bithiophene with 3- and/or 4‑Pyridyl Substituents
Published 2023“…To improve the charge-carrier transport capabilities of thin-film organic materials, the intermolecular electronic couplings in the material should be maximized. Decreasing intermolecular distance while maintaining proper orbital overlap in highly conjugated aromatic molecules has so far been a successful way to increase electronic coupling. …”
-
34
-
35
-
36
-
37
-
38
-
39
-
40