Showing 1 - 20 results of 1,318 for search '(( c larger decrease ) OR ((( via ((peer decrease) OR (teer decrease)) ) OR ( a large degree ))))', query time: 0.49s Refine Results
  1. 1
  2. 2

    MEDOC: A Fast, Scalable, and Mathematically Exact Algorithm for the Site-Specific Prediction of the Protonation Degree in Large Disordered Proteins by Martin J. Fossat (3714079)

    Published 2025
    “…To address this problem, we developed "multisite extent of deprotonation originating from context" (MEDOC) to determine the degree of protonation of a protein based on the local sequence context of each ionizable residue. …”
  3. 3
  4. 4

    Biases in larger populations. by Sander W. Keemink (21253563)

    Published 2025
    “…<p>(<b>A</b>) Maximum absolute bias vs the number of neurons in the population for the Bayesian decoder. Bias decreases with increasing neurons in the population. …”
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11

    The introduction of mutualisms into assembled communities increases their connectance and complexity while decreasing their richness. by Gui Araujo (22170819)

    Published 2025
    “…(C) Mutualism also promotes an increase in network connectance when introduced into assembled communities, while stopping mutualistic interactions from entering an assembled system slowly decreases it. …”
  12. 12
  13. 13
  14. 14

    Data from: Large subsurface carbon stocks in a long-term no-tillage site are vulnerable to potential mineralization by Qiuping Peng (20147290)

    Published 2024
    “…</p> <p>Results showed that SOC concentrations declined with depth, but the fraction that was mineralized in 350-day laboratory incubations increased with depth. We found 51% larger stocks of readily mineralized SOC stocks for the 30-153 cm depth (18.3 ± 4 Mg C ha<sup>-1</sup>) compared to 0-30 cm (12.1 ± 1.6 Mg C ha<sup>-1</sup>), when summing the kinetic pools that had transit times of up to 2 years. …”
  15. 15
  16. 16
  17. 17
  18. 18

    Image 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  19. 19

    Table 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.docx by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  20. 20

    Image 5_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”