Search alternatives:
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
three process » free process (Expand Search), three protiens (Expand Search), whole process (Expand Search)
base model » based model (Expand Search), based models (Expand Search), game model (Expand Search)
ciliary » biliary (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
three process » free process (Expand Search), three protiens (Expand Search), whole process (Expand Search)
base model » based model (Expand Search), based models (Expand Search), game model (Expand Search)
ciliary » biliary (Expand Search)
-
1
-
2
-
3
-
4
Python-Based Algorithm for Estimating NRTL Model Parameters with UNIFAC Model Simulation Results
Published 2025“…The percentage mean absolute residuals of the activity coefficients obtained using DEA, NMM, and the parameter estimation tool in Aspen Plus were in the ranges of 0.05–16.69, 0.05–16.69, and 0.09–326.77%, respectively. This in-house algorithm will be helpful for obtaining more accurate NRTL parameters in a timely manner and will facilitate the simulation of biochemical processes for process optimization, energy consumption estimation, and life cycle assessment.…”
-
5
Analysis and design of algorithms for the manufacturing process of integrated circuits
Published 2023“…Additionally, the results obtained from our new ILP model indicate that our genetic algorithm results are very close to the optimal values.…”
-
6
-
7
Secure MANET routing with blockchain-enhanced latent encoder coupled GANs and BEPO optimization
Published 2025“…The performance of the proposed LEGAN-BEPO-BCMANET technique attains 29.786%, 19.25%, 22.93%, 27.21%, 31.02%, 26.91%, and 25.61% greater throughput, compared to existing methods like Blockchain-based BATMAN protocol utilizing MANET with an ensemble algorithm (BATMAN-MANET), Block chain-based trusted distributed routing scheme with optimized dropout ensemble extreme learning neural network in MANET (DEELNN-MANET), A secured trusted routing utilizing structure of a new directed acyclic graph-blockchain in MANET internet of things environment (DAG-MANET), An Optimized Link State Routing Protocol with Blockchain Framework for Efficient Video-Packet Transmission and Security over MANET (OLSRP-MANET), Auto-metric Graph Neural Network based Blockchain Technology for Protected Dynamic Optimum Routing in MANET (AGNN-MANET) and Data security-based routing in MANETs under key management process (DSR-MANET) respectively.…”
-
8
-
9
-
10
Parameter settings.
Published 2024“…<div><p>Differential Evolution (DE) is widely recognized as a highly effective evolutionary algorithm for global optimization. It has proven its efficacy in tackling diverse problems across various fields and real-world applications. …”
-
11
-
12
-
13
Design and implementation of the Multiple Criteria Decision Making (MCDM) algorithm for predicting the severity of COVID-19.
Published 2021“…<p>(A). The MCDM algorithm-Stage 1. Preprocessing, this stage is the process of refining the collected raw data to eliminate noise, including correlation analysis and feature selection based on P values. …”
-
14
Natural language processing for automated quantification of bone metastases reported in free-text bone scintigraphy reports
Published 2020“…The aim of this study was to develop a natural language processing (NLP) algorithm for binary classification (single metastasis versus two or more metastases) in bone scintigraphy reports of patients undergoing surgery for bone metastases.…”
-
15
-
16
-
17
-
18
-
19
Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish)
Published 2024“…</li></ul><p dir="ltr"><b>File Structure</b></p><p dir="ltr">The code generates and saves:</p><ul><li>Weights of the trained model (.h5)</li><li>Configured tokenizer</li><li>Training history in CSV</li><li>Requirements file</li></ul><p dir="ltr"><b>Important Notes</b></p><ul><li>The model excludes category 2 during training</li><li>Implements transfer learning from a pre-trained model for binary hate detection</li><li>Includes early stopping callbacks to prevent overfitting</li><li>Uses class weighting to handle category imbalances</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at: Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …”
-
20