Search alternatives:
marked decrease » marked increase (Expand Search)
large decrease » larger decrease (Expand Search), large increases (Expand Search), large degree (Expand Search)
clusters a » clusters _ (Expand Search), cluster a (Expand Search), cluster _ (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
marked decrease » marked increase (Expand Search)
large decrease » larger decrease (Expand Search), large increases (Expand Search), large degree (Expand Search)
clusters a » clusters _ (Expand Search), cluster a (Expand Search), cluster _ (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
1
-
2
-
3
<b>The loss of insulin-positive cell clusters precedes the decrease of islet frequency and beta cell area in type 1 diabetes</b>
Published 2025“…Moreover, changes in endocrine composition also occurred in mAAb+ donors, including a significant decrease in the INS+ islet fraction. …”
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
An <i>In Situ</i> TEM Study of the Diffusivity of Gold Atoms in Nanocomposite Thin Films by Zirconia Co-Deposition: Implication for Neuromorphic Devices
Published 2025“…Molecular dynamics simulations corroborated these findings, showing a marked decrease in gold diffusivity when codeposited with zirconia: its inclusion reduced it by approximately a factor of 3, mainly due to zirconia’s high melting point. …”
-
13
An <i>In Situ</i> TEM Study of the Diffusivity of Gold Atoms in Nanocomposite Thin Films by Zirconia Co-Deposition: Implication for Neuromorphic Devices
Published 2025“…Molecular dynamics simulations corroborated these findings, showing a marked decrease in gold diffusivity when codeposited with zirconia: its inclusion reduced it by approximately a factor of 3, mainly due to zirconia’s high melting point. …”
-
14
An <i>In Situ</i> TEM Study of the Diffusivity of Gold Atoms in Nanocomposite Thin Films by Zirconia Co-Deposition: Implication for Neuromorphic Devices
Published 2025“…Molecular dynamics simulations corroborated these findings, showing a marked decrease in gold diffusivity when codeposited with zirconia: its inclusion reduced it by approximately a factor of 3, mainly due to zirconia’s high melting point. …”
-
15
An <i>In Situ</i> TEM Study of the Diffusivity of Gold Atoms in Nanocomposite Thin Films by Zirconia Co-Deposition: Implication for Neuromorphic Devices
Published 2025“…Molecular dynamics simulations corroborated these findings, showing a marked decrease in gold diffusivity when codeposited with zirconia: its inclusion reduced it by approximately a factor of 3, mainly due to zirconia’s high melting point. …”
-
16
An <i>In Situ</i> TEM Study of the Diffusivity of Gold Atoms in Nanocomposite Thin Films by Zirconia Co-Deposition: Implication for Neuromorphic Devices
Published 2025“…Molecular dynamics simulations corroborated these findings, showing a marked decrease in gold diffusivity when codeposited with zirconia: its inclusion reduced it by approximately a factor of 3, mainly due to zirconia’s high melting point. …”
-
17
An <i>In Situ</i> TEM Study of the Diffusivity of Gold Atoms in Nanocomposite Thin Films by Zirconia Co-Deposition: Implication for Neuromorphic Devices
Published 2025“…Molecular dynamics simulations corroborated these findings, showing a marked decrease in gold diffusivity when codeposited with zirconia: its inclusion reduced it by approximately a factor of 3, mainly due to zirconia’s high melting point. …”
-
18
An <i>In Situ</i> TEM Study of the Diffusivity of Gold Atoms in Nanocomposite Thin Films by Zirconia Co-Deposition: Implication for Neuromorphic Devices
Published 2025“…Molecular dynamics simulations corroborated these findings, showing a marked decrease in gold diffusivity when codeposited with zirconia: its inclusion reduced it by approximately a factor of 3, mainly due to zirconia’s high melting point. …”
-
19
-
20