Showing 161 - 180 results of 257 for search '(( code selection algorithm ) OR ( code encryption algorithm ))', query time: 0.30s Refine Results
  1. 161
  2. 162

    Supplementary Table S7: All Results of Structural Alignment between Selected Rice Gene Group and Human using the Foldseek by Sora Yonezawa (14618045)

    Published 2025
    “…</p><p dir="ltr">【Column Name Description】<br>"From" column: rice (<i>Oryza sativa subsp. japonica</i>) gene ID</p><p dir="ltr">"HN5": HN-score (gene expression pattern metrics)<br>"UniProt Accession": rice structure prediction accession (UniProt accession)<br>"foldseek hit": human structure prediction accession (UniProt accession)<br></p><p><br></p><p dir="ltr">Table S7-1: <b>foldseek_output_uniprot_rice_up_9606_modified</b>: Results of structural alignment of rice upregulated gene group and human using Foldseek (3Di + AA Goto-Smith-waterman algorithm)</p><p dir="ltr">Table S7-2: <b>foldseek_output_uniprot_rice_up_9606_tmalign</b><b>_modified</b>: Results of structural alignment of rice upregulated gene group and human using Foldseek (Foldseek-TM)</p><p dir="ltr">Table S7-3: <b>foldseek_output_uniprot_rice_down_9606</b><b>_modified</b>: Results of structural alignment of rice downregulated gene group and human using Foldseek (3Di + AA Goto-Smith-waterman algorithm)</p><p dir="ltr">Table S7-4: <b>foldseek_output_uniprot_rice_down_9606_tmalign</b><b>_modified</b>: Results of structural alignment of rice downregulated gene group and human using Foldseek (Foldseek-TM)</p><p dir="ltr"><b>List of execution commands (using Common Workflow Language (CWL), the workflow language):</b></p><p dir="ltr">Note: You can use files from the following repositories: <a href="https://github.com/yonesora56/HS_rice_analysis" rel="noreferrer" target="_blank">https://github.com/yonesora56/HS_rice_analysis</a></p><p dir="ltr"><b>(1) Index creation using the </b><code><strong>foldseek databases</strong></code><b> command (network access required)</b></p><h4><code>cwltool --debug .…”
  3. 163
  4. 164
  5. 165
  6. 166
  7. 167
  8. 168
  9. 169
  10. 170
  11. 171
  12. 172
  13. 173
  14. 174
  15. 175
  16. 176

    Field photo diagnostic imaging by Hirokuni Miyamoto (16318251)

    Published 2025
    “…</p><p dir="ltr">Data_file_fish_new.xlsx: Whole raw data</p><p dir="ltr">utils.py (causion: same to original command name "utils.py" for "<code>machine_learning.py"</code>in the GitHub website "<a href="https://github.com/hmiyamoto2000/program_tai1_Texture_main/tree/v1.0.6" target="_blank">program_tai1_Texture_main</a><a href="https://github.com/hmiyamoto2000/program_tai1_Texture_main/tree/v2.0.1" target="_blank">(https://github.com/hmiyamoto2000/program_tai1_Texture_main/tree/v2.0.1</a>)": optional command for feature selection based on machine learning algorithms (The new command "utils.py" fix the random seed to control the randomness and reduce uncertainty in the training process to improve reproducibility and stability of the results.)…”
  17. 177
  18. 178
  19. 179

    DataSheet1_DGDRP: drug-specific gene selection for drug response prediction via re-ranking through propagating and learning biological network.PDF by Minwoo Pak (6842618)

    Published 2024
    “…The source code for DGDRP can be found at: https://github.com/minwoopak/heteronet.…”
  20. 180