بدائل البحث:
learning algorithm » learning algorithms (توسيع البحث)
coding algorithm » cosine algorithm (توسيع البحث), modeling algorithm (توسيع البحث), finding algorithm (توسيع البحث)
agent learning » student learning (توسيع البحث)
complement 5a » complement _ (توسيع البحث), complement low (توسيع البحث)
5a algorithm » coa algorithm (توسيع البحث), sac algorithm (توسيع البحث), _ algorithm (توسيع البحث)
learning algorithm » learning algorithms (توسيع البحث)
coding algorithm » cosine algorithm (توسيع البحث), modeling algorithm (توسيع البحث), finding algorithm (توسيع البحث)
agent learning » student learning (توسيع البحث)
complement 5a » complement _ (توسيع البحث), complement low (توسيع البحث)
5a algorithm » coa algorithm (توسيع البحث), sac algorithm (توسيع البحث), _ algorithm (توسيع البحث)
-
1
-
2
Single agent and multi-agents tasks for <i>LazyAct</i>.
منشور في 2025"…Specifically, each decision made by an agent requires a complete neural network computation, leading to a linear increase in computational cost with the number of interactions and agents. …"
-
3
-
4
-
5
-
6
-
7
-
8
Network architectures for multi-agents task.
منشور في 2025"…Specifically, each decision made by an agent requires a complete neural network computation, leading to a linear increase in computational cost with the number of interactions and agents. …"
-
9
Time(s) and GFLOPs savings of single-agent tasks.
منشور في 2025"…Specifically, each decision made by an agent requires a complete neural network computation, leading to a linear increase in computational cost with the number of interactions and agents. …"
-
10
-
11
-
12
-
13
Scores vs Skip ratios on single-agent task.
منشور في 2025"…Specifically, each decision made by an agent requires a complete neural network computation, leading to a linear increase in computational cost with the number of interactions and agents. …"
-
14
-
15
-
16
-
17
-
18
Win rate vs Skip ratios on multi-agents tasks.
منشور في 2025"…Specifically, each decision made by an agent requires a complete neural network computation, leading to a linear increase in computational cost with the number of interactions and agents. …"
-
19
-
20
Completion times for different algorithms.
منشور في 2025"…This paper first analyzes the H-beam processing flow and appropriately simplifies it, develops a reinforcement learning environment for multi-agent scheduling, and applies the rMAPPO algorithm to make scheduling decisions. …"