يعرض 1 - 20 نتائج من 4,178 نتيجة بحث عن '(( complement system algorithm ) OR ((( data code algorithm ) OR ( data version algorithm ))))', وقت الاستعلام: 1.20s تنقيح النتائج
  1. 1
  2. 2

    Codes of the flow distance algorithm "D∞-TLI" and the width function algorithm "MEB" حسب Pengfei Wu (11627371)

    منشور في 2023
    "…<p>The JAVA codes of the flow distance algorithm "D∞-TLI" and the width function algorithm "MEB" are provided. …"
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7

    ZM deep convection code structure. حسب Yongfei Wang (608480)

    منشور في 2024
    "…These algorithms are implemented using CUDA C and compared against a single Kunpeng-920 (Dual Socket) CPU core and the OpenMP version on multi-core CPUs. …"
  8. 8
  9. 9
  10. 10
  11. 11

    G R code algorithm. حسب R. Sakthivel (2589547)

    منشور في 2024
    "…The algorithm was developed and coded in Verilog and simulated using Modelsim. …"
  12. 12
  13. 13

    Algoritmo de detección de odio en español (Algorithm for detection of hate speech in Spanish) حسب Elias Said-Hung (10790310)

    منشور في 2024
    "…</li></ul><h2>Training Process</h2><h3>Pre-workout</h3><ul><li>Batch size: 16</li><li>Epochs: 5</li><li>Learning rate: 2e-5 with 10% warmup steps</li><li>Early stopping with patience=2</li></ul><h3>Fine-tuning</h3><ul><li>Batch size: 128</li><li>Epochs: 5</li><li>Learning rate: 2e-5 with 10% warmup steps</li><li>Early stopping with patience=2</li><li>Custom metrics:</li><li>Recall for non-hate class</li><li>Precision for hate class</li><li>F1-score (weighted)</li><li>AUC-PR</li><li>Recall at precision=0.9 (non-hate)</li><li>Precision at recall=0.9 (hate)</li></ul><h2>Evaluation Metrics</h2><p dir="ltr">The model is evaluated using:</p><ul><li>Macro recall, precision, and F1-score</li><li>One-vs-Rest AUC</li><li>Accuracy</li><li>Metrics by class</li><li>Confusion matrix</li></ul><h2>Requirements</h2><p dir="ltr">The following Python packages are required (see requirements.txt for the full list):</p><ul><li>TensorFlow</li><li>Transformers</li><li>scikit-learn</li><li>pandas</li><li>datasets</li><li>matplotlib</li><li>seaborn</li></ul><h2>Usage</h2><p dir="ltr">The model expects input data with the following specifications:</p><ol><li><b>Data Format</b>:</li></ol><ul><li>CSV file or Pandas DataFrame</li><li>Mandatory column name: <code>text</code> (type string)</li><li>Optional column name: <code>label</code> (type integer, 0 or 1) if available for evaluation</li></ul><ol><li><b>Text Preprocessing</b>:</li></ol><ul><li>Text will be automatically converted to lowercase during processing</li><li>Maximum length: 128 tokens (longer texts will be truncated)</li><li>Special characters, URLs, and emojis must remain in the text (the tokenizer handles these)</li></ul><ol><li><b>Label Encoding</b>:</li></ol><ul><li><code>0</code> = No hateful content (including neutral/positive content)</li><li>1 = Hate speech</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at:Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …"
  14. 14

    Algorithmic code and original data.zip حسب Weidong Jiang (17122639)

    منشور في 2023
    "…The authors have attached the raw data and algorithm code in the zip file. The running of the model is supported by packages like Numpy, Matplotlib, Searborn, Scipy in Python.…"
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20