بدائل البحث:
largest decrease » marked decrease (توسيع البحث)
larger decrease » marked decrease (توسيع البحث)
nn decrease » _ decrease (توسيع البحث), a decrease (توسيع البحث), mean decrease (توسيع البحث)
0 nn » 0 non (توسيع البحث), 0 nm (توسيع البحث), _ nn (توسيع البحث)
largest decrease » marked decrease (توسيع البحث)
larger decrease » marked decrease (توسيع البحث)
nn decrease » _ decrease (توسيع البحث), a decrease (توسيع البحث), mean decrease (توسيع البحث)
0 nn » 0 non (توسيع البحث), 0 nm (توسيع البحث), _ nn (توسيع البحث)
-
1
-
2
-
3
-
4
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
-
5
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
-
6
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
-
7
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
-
8
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
-
9
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
-
10
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
-
11
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
-
12
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
-
13
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
-
14
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
-
15
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
-
16
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
-
17
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
-
18
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
-
19
Image 2_Computed tomography and magnetic resonance imaging features of primary liver perivascular epithelioid cell tumor with renal angiomyolipoma: a case report and literature rev...
منشور في 2025"…The enhancement slightly decreased in the equilibrium phase and the delayed phase. …"
-
20
Image 1_Computed tomography and magnetic resonance imaging features of primary liver perivascular epithelioid cell tumor with renal angiomyolipoma: a case report and literature rev...
منشور في 2025"…The enhancement slightly decreased in the equilibrium phase and the delayed phase. …"