Showing 1 - 20 results of 30 for search '(( ct ((largest decrease) OR (larger decrease)) ) OR ( c nn decrease ))', query time: 0.34s Refine Results
  1. 1
  2. 2
  3. 3

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …”
  4. 4

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …”
  5. 5

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …”
  6. 6

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …”
  7. 7

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …”
  8. 8

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …”
  9. 9

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …”
  10. 10

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …”
  11. 11

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …”
  12. 12

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …”
  13. 13

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …”
  14. 14

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …”
  15. 15

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …”
  16. 16

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …”
  17. 17

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …”
  18. 18
  19. 19
  20. 20

    Data Sheet 1_Correlation analysis of osteoporosis and vertebral endplate defects using CT and MRI imaging: a retrospective cross-sectional study.pdf by Song Hao (5700608)

    Published 2025
    “…</p>Methods<p>Computed tomography (CT), magnetic resonance imaging (MRI), bone mineral density (BMD) and other relevant imaging data, as well as age, sex, body mass index (BMI), and degree of low back pain data, were retrospectively analysed. …”