Search alternatives:
largest decrease » marked decrease (Expand Search)
larger decrease » marked decrease (Expand Search)
gen decrease » mean decrease (Expand Search), nn decrease (Expand Search), we decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
largest decrease » marked decrease (Expand Search)
larger decrease » marked decrease (Expand Search)
gen decrease » mean decrease (Expand Search), nn decrease (Expand Search), we decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
1
-
2
-
3
-
4
BrdU incorporation is elevated in clrn1-/- zebrafish at 4 mpf and decreases with age.
Published 2025“…<p>Anti-BrdU (green) staining in paraffin sections from (a,a’) 4 mpf, (b,b’) 8 mpf, (c,c’) 12 mpf, and (d,d’) 20 mpf in wild-type and <i>clrn1</i><sup><i>-/-</i></sup> zebrafish retinas. …”
-
5
-
6
-
7
-
8
-
9
-
10
-
11
Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts
Published 2025“…In contrast, an in-depth examination of the H<sub>2</sub> activation pathway by <b>1</b><sup><b>+</b></sup> suggests that inducing ligand flexibility facilitates access to a reactive state through rehybridization at the phosphorus center. …”
-
12
Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts
Published 2025“…In contrast, an in-depth examination of the H<sub>2</sub> activation pathway by <b>1</b><sup><b>+</b></sup> suggests that inducing ligand flexibility facilitates access to a reactive state through rehybridization at the phosphorus center. …”
-
13
Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts
Published 2025“…In contrast, an in-depth examination of the H<sub>2</sub> activation pathway by <b>1</b><sup><b>+</b></sup> suggests that inducing ligand flexibility facilitates access to a reactive state through rehybridization at the phosphorus center. …”
-
14
Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts
Published 2025“…In contrast, an in-depth examination of the H<sub>2</sub> activation pathway by <b>1</b><sup><b>+</b></sup> suggests that inducing ligand flexibility facilitates access to a reactive state through rehybridization at the phosphorus center. …”
-
15
Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts
Published 2025“…In contrast, an in-depth examination of the H<sub>2</sub> activation pathway by <b>1</b><sup><b>+</b></sup> suggests that inducing ligand flexibility facilitates access to a reactive state through rehybridization at the phosphorus center. …”
-
16
Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts
Published 2025“…In contrast, an in-depth examination of the H<sub>2</sub> activation pathway by <b>1</b><sup><b>+</b></sup> suggests that inducing ligand flexibility facilitates access to a reactive state through rehybridization at the phosphorus center. …”
-
17
Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts
Published 2025“…In contrast, an in-depth examination of the H<sub>2</sub> activation pathway by <b>1</b><sup><b>+</b></sup> suggests that inducing ligand flexibility facilitates access to a reactive state through rehybridization at the phosphorus center. …”
-
18
Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts
Published 2025“…In contrast, an in-depth examination of the H<sub>2</sub> activation pathway by <b>1</b><sup><b>+</b></sup> suggests that inducing ligand flexibility facilitates access to a reactive state through rehybridization at the phosphorus center. …”
-
19
Knock-down of DYRK1A decreases HBV RNAs levels in HBV-infected dHepaRG cells.
Published 2024Subjects: -
20