Showing 1 - 20 results of 747 for search '(( ct ((marked decrease) OR (larger decrease)) ) OR ( 92 ((nn decrease) OR (a decrease)) ))', query time: 0.26s Refine Results
  1. 1
  2. 2

    Charge-Transfer-Driven Electrical Conductivity in Single Crystals of Assembled Triphenylamine Bis-urea Macrocycles by Fahidat A. Gbadamosi (22123930)

    Published 2025
    “…This is attributed to efficient CT observed in spectroscopic analyses and is consistent with the computed small HOMO–LUMO gap (2.92 eV) in a model of the host–guest system. <b>1</b>(MN)<sub>0.39</sub> and <b>1</b>(BTD)<sub>0.5</sub> demonstrated moderate conductivities explained by the interplay of electronic coupling, reorganization energy, and energy gap. …”
  3. 3

    Charge-Transfer-Driven Electrical Conductivity in Single Crystals of Assembled Triphenylamine Bis-urea Macrocycles by Fahidat A. Gbadamosi (22123930)

    Published 2025
    “…This is attributed to efficient CT observed in spectroscopic analyses and is consistent with the computed small HOMO–LUMO gap (2.92 eV) in a model of the host–guest system. <b>1</b>(MN)<sub>0.39</sub> and <b>1</b>(BTD)<sub>0.5</sub> demonstrated moderate conductivities explained by the interplay of electronic coupling, reorganization energy, and energy gap. …”
  4. 4

    Charge-Transfer-Driven Electrical Conductivity in Single Crystals of Assembled Triphenylamine Bis-urea Macrocycles by Fahidat A. Gbadamosi (22123930)

    Published 2025
    “…This is attributed to efficient CT observed in spectroscopic analyses and is consistent with the computed small HOMO–LUMO gap (2.92 eV) in a model of the host–guest system. <b>1</b>(MN)<sub>0.39</sub> and <b>1</b>(BTD)<sub>0.5</sub> demonstrated moderate conductivities explained by the interplay of electronic coupling, reorganization energy, and energy gap. …”
  5. 5

    Charge-Transfer-Driven Electrical Conductivity in Single Crystals of Assembled Triphenylamine Bis-urea Macrocycles by Fahidat A. Gbadamosi (22123930)

    Published 2025
    “…This is attributed to efficient CT observed in spectroscopic analyses and is consistent with the computed small HOMO–LUMO gap (2.92 eV) in a model of the host–guest system. <b>1</b>(MN)<sub>0.39</sub> and <b>1</b>(BTD)<sub>0.5</sub> demonstrated moderate conductivities explained by the interplay of electronic coupling, reorganization energy, and energy gap. …”
  6. 6

    Charge-Transfer-Driven Electrical Conductivity in Single Crystals of Assembled Triphenylamine Bis-urea Macrocycles by Fahidat A. Gbadamosi (22123930)

    Published 2025
    “…This is attributed to efficient CT observed in spectroscopic analyses and is consistent with the computed small HOMO–LUMO gap (2.92 eV) in a model of the host–guest system. <b>1</b>(MN)<sub>0.39</sub> and <b>1</b>(BTD)<sub>0.5</sub> demonstrated moderate conductivities explained by the interplay of electronic coupling, reorganization energy, and energy gap. …”
  7. 7

    Charge-Transfer-Driven Electrical Conductivity in Single Crystals of Assembled Triphenylamine Bis-urea Macrocycles by Fahidat A. Gbadamosi (22123930)

    Published 2025
    “…This is attributed to efficient CT observed in spectroscopic analyses and is consistent with the computed small HOMO–LUMO gap (2.92 eV) in a model of the host–guest system. <b>1</b>(MN)<sub>0.39</sub> and <b>1</b>(BTD)<sub>0.5</sub> demonstrated moderate conductivities explained by the interplay of electronic coupling, reorganization energy, and energy gap. …”
  8. 8
  9. 9
  10. 10

    RBM39 is methylated by PRMT6 at arginine 92. by Tongjia Zhang (16496661)

    Published 2025
    “…(<b>M</b>) HEK293T cells were co-transfected with FLAG-RBM39/ FLAG-R92K with HA-PRMT6/HA-E155/164A and subjected to immunoprecipitation followed by western blotting. …”
  11. 11
  12. 12
  13. 13

    Advancing Circular Bioeconomy through a Systems-Level Assessment of Food Waste and Industrial Sludge Codigestion by Md. Nizam Uddin (21632518)

    Published 2025
    “…Overall, codigesting FW with PPMS is revealed to be a sustainable waste management option to decrease landfill disposal of valuable organic waste.…”
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20