Showing 1 - 20 results of 146 for search '(( ct ((marked decrease) OR (larger decrease)) ) OR ( c ((greatest decrease) OR (nn decrease)) ))', query time: 0.58s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …”
  19. 19

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …”
  20. 20

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …”