بدائل البحث:
marked decrease » marked increase (توسيع البحث)
nn decrease » _ decrease (توسيع البحث), a decrease (توسيع البحث), mean decrease (توسيع البحث)
c nn » c ann (توسيع البحث), c n (توسيع البحث), _ nn (توسيع البحث)
marked decrease » marked increase (توسيع البحث)
nn decrease » _ decrease (توسيع البحث), a decrease (توسيع البحث), mean decrease (توسيع البحث)
c nn » c ann (توسيع البحث), c n (توسيع البحث), _ nn (توسيع البحث)
-
1
-
2
-
3
-
4
-
5
-
6
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …"
-
7
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …"
-
8
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …"
-
9
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …"
-
10
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …"
-
11
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …"
-
12
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …"
-
13
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …"
-
14
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …"
-
15
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …"
-
16
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …"
-
17
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …"
-
18
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …"
-
19
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …"
-
20
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …"